Claudia Conti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4971415/publications.pdf

Version: 2024-02-01

54 papers

1,301 citations

304602 22 h-index 33 g-index

54 all docs

54 docs citations

54 times ranked 1088 citing authors

#	Article	IF	Citations
1	Non-destructive Monitoring of Dye Depth Profile in Mesoporous TiO ₂ Electrodes of Solar Cells with Micro-SORS. Analytical Chemistry, 2022, 94, 2966-2972.	3.2	2
2	Nonâ€destructive analysis of concentration profiles in turbid media using microâ€spatially offset Raman spectroscopy: A physical model. Journal of Raman Spectroscopy, 2022, 53, 1592-1603.	1.2	1
3	Sub-Surface Molecular Analysis and Imaging in Turbid Media Using Time-Gated Raman Spectral Multiplexing. Applied Spectroscopy, 2021, 75, 156-167.	1.2	10
4	Spatially offset Raman spectroscopy. Nature Reviews Methods Primers, 2021, 1, .	11.8	80
5	Advances in Raman spectroscopy for the non-destructive subsurface analysis of artworks: Micro-SORS. Journal of Cultural Heritage, 2020, 43, 319-328.	1.5	18
6	Non-invasive characterisation of molecular diffusion of agent into turbid matrix using micro-SORS. Talanta, 2020, 218, 121078.	2.9	9
7	Synchrotron radiation $\hat{l}^{1}\!\!/\!\!4$ X-ray diffraction in transmission geometry for investigating the penetration depth of conservation treatments on cultural heritage stone materials. Analytical Methods, 2020, 12, 1587-1594.	1.3	12
8	Polychrome sculptures of medieval Italian monuments: Study of the binding media and pigments. Microchemical Journal, 2020, 158, 105100.	2.3	9
9	Nonâ€invasive and <i>in situ</i> investigation of layers sequence in panel paintings by portable microâ€spatially offset Raman spectroscopy. Journal of Raman Spectroscopy, 2020, 51, 2016-2021.	1.2	10
10	Consolidation of building materials with a phosphate-based treatment: Effects on the microstructure and on the 3D pore network. Materials Characterization, 2019, 154, 315-324.	1.9	11
11	Diammonium Hydrogenphosphate Treatment on Dolostone: the Role of Mg in the Crystallization Process. Coatings, 2019, 9, 169.	1.2	14
12	Archaeometric and archaeological study of painted plaster from the Church of St. Philip in Hierapolis of Phrygia (Turkey). Journal of Archaeological Science: Reports, 2019, 24, 869-878.	0.2	5
13	Diammonium hydrogenphosphate for the consolidation of building materials. Investigation of newly-formed calcium phosphates. Construction and Building Materials, 2019, 195, 557-563.	3.2	34
14	Chemically and size-resolved particulate matter dry deposition on stone and surrogate surfaces inside and outside the low emission zone of Milan: application of a newly developed "Deposition Box― Environmental Science and Pollution Research, 2018, 25, 9402-9415.	2.7	4
15	Grazing incidence synchrotron X-ray diffraction of marbles consolidated with diammonium hydrogen phosphate treatments: non-destructive probing of buried minerals. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	9
16	High Resolution ATR $\hat{1}$ /4-FTIR to map the diffusion of conservation treatments applied to painted plasters. Vibrational Spectroscopy, 2018, 98, 105-110.	1.2	10
17	Exploring street art paintings by microspatially offset Raman spectroscopy. Journal of Raman Spectroscopy, 2018, 49, 1652-1659.	1.2	15
18	Neutron radiography as a tool for assessing penetration depth and distribution of a phosphate consolidant for limestone. Construction and Building Materials, 2018, 187, 238-247.	3.2	11

#	Article	IF	CITATIONS
19	What's underneath? A non-destructive depth profile of painted stratigraphies by synchrotron grazing incidence X-ray diffraction. Analyst, The, 2018, 143, 4290-4297.	1.7	10
20	Contrasting confocal XRF with micro-SORS: a deep view within micrometric painted stratigraphy. Analytical Methods, 2018, 10, 3837-3844.	1.3	8
21	Development of a full micro-scale spatially offset Raman spectroscopy prototype as a portable analytical tool. Analyst, The, 2017, 142, 351-355.	1.7	29
22	Discovering Hidden Painted Images: Subsurface Imaging Using Microscale Spatially Offset Raman Spectroscopy. Analytical Chemistry, 2017, 89, 792-798.	3.2	25
23	Investigation of Heterogeneous Painted Systems by Micro-Spatially Offset Raman Spectroscopy. Analytical Chemistry, 2017, 89, 11476-11483.	3.2	11
24	Development of defocusing micro-SORS mapping: a study of a 19 th century porcelain card. Analytical Methods, 2017, 9, 6435-6442.	1.3	14
25	Development of neutron imaging quantitative data treatment to assess conservation products in cultural heritage. Analytical and Bioanalytical Chemistry, 2017, 409, 6133-6139.	1.9	17
26	Development of a Fiber-Optics Microspatially Offset Raman Spectroscopy Sensor for Probing Layered Materials. Analytical Chemistry, 2017, 89, 9218-9223.	3.2	17
27	Close to the diffraction limit in high resolution ATR FTIR mapping: demonstration on micrometric multi-layered art systems. Analyst, The, 2017, 142, 4801-4811.	1.7	14
28	A multi-analytical approach for the characterization of wall painting materials on contemporary buildings. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 173, 39-45.	2.0	15
29	Portable Sequentially Shifted Excitation Raman spectroscopy as an innovative tool for in situ chemical interrogation of painted surfaces. Analyst, The, 2016, 141, 4599-4607.	1.7	56
30	Development of portable defocusing micro-scale spatially offset Raman spectroscopy. Analyst, The, 2016, 141, 3012-3019.	1.7	25
31	Determination of thickness of thin turbid painted over-layers using micro-scale spatially offset Raman spectroscopy. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20160049.	1.6	14
32	Methodological evolutions of Raman spectroscopy in art and archaeology. Analytical Methods, 2016, 8, 8395-8409.	1.3	70
33	Fluorescence suppression using micro-scale spatially offset Raman spectroscopy. Analyst, The, 2016, 141, 5374-5381.	1.7	21
34	Investigation of ammonium oxalate diffusion in carbonatic substrates by neutron tomography. Journal of Cultural Heritage, 2016, 19, 463-466.	1.5	17
35	Analytical Capability of Defocused µ-SORS in the Chemical Interrogation of Thin Turbid Painted Layers. Applied Spectroscopy, 2016, 70, 156-161.	1.2	10
36	Monte Carlo Simulations of Subsurface Analysis of Painted Layers in Micro-Scale Spatially Offset Raman Spectroscopy. Applied Spectroscopy, 2015, 69, 1091-1095.	1.2	23

3

#	Article	IF	CITATIONS
37	Subsurface analysis of painted sculptures and plasters using micrometreâ€scale spatially offset Raman spectroscopy (microâ€6ORS). Journal of Raman Spectroscopy, 2015, 46, 476-482.	1.2	70
38	Noninvasive Analysis of Thin Turbid Layers Using Microscale Spatially Offset Raman Spectroscopy. Analytical Chemistry, 2015, 87, 5810-5815.	3.2	41
39	Comparison of key modalities of micro-scale spatially offset Raman spectroscopy. Analyst, The, 2015, 140, 8127-8133.	1.7	44
40	Synthesis of calcium oxalate trihydrate: New data by vibrational spectroscopy and synchrotron X-ray diffraction. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 150, 721-730.	2.0	44
41	The detection of copper resinate pigment in works of art: contribution from Raman spectroscopy. Journal of Raman Spectroscopy, 2014, 45, 1186-1196.	1.2	31
42	The role of zinc white pigment on the degradation of shellac resin in artworks. Polymer Degradation and Stability, 2014, 102, 138-144.	2.7	26
43	Phase transformation of calcium oxalate dihydrate–monohydrate: Effects of relative humidity and new spectroscopic data. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 128, 413-419.	2.0	59
44	Diethyl oxalate as a new potential conservation product for decayed carbonatic substrates. Journal of Cultural Heritage, 2014, 15, 336-338.	1.5	18
45	Subsurface Raman Analysis of Thin Painted Layers. Applied Spectroscopy, 2014, 68, 686-691.	1.2	70
46	Portable Raman versus portable mid-FTIR reflectance instruments to monitor synthetic treatments used for the conservation of monument surfaces. Analytical and Bioanalytical Chemistry, 2013, 405, 1733-1741.	1.9	15
47	μâ€Raman mapping to study calcium oxalate historical films. Journal of Raman Spectroscopy, 2012, 43, 1604-1611.	1.2	29
48	Ammonium oxalate treatment: Evaluation by $\hat{l}\frac{1}{4}$ -Raman mapping of the penetration depth in different plasters. Journal of Cultural Heritage, 2011, 12, 372-379.	1.5	34
49	Terracotta polychrome sculptures examined before and after their conservation work: contributions from non-invasive in situ analytical techniques. Analytical and Bioanalytical Chemistry, 2011, 401, 757-765.	1.9	15
50	Microâ€Raman mapping on polished cross sections: a tool to define the penetration depth of conservation treatment on cultural heritage. Journal of Raman Spectroscopy, 2010, 41, 1254-1260.	1.2	33
51	Stability and transformation mechanism of weddellite nanocrystals studied by X-ray diffraction and infrared spectroscopy. Physical Chemistry Chemical Physics, 2010, 12, 14560.	1.3	54
52	Micro-Raman depth profiling on polished cross-sections: the mapping of oxalates used in protective treatment of carbonatic substrate. Journal of Raman Spectroscopy, 2008, 39, 1307-1308.	1.2	5
53	The stucco decorations from St. Lorenzo in Laino (Como, Italy): The materials and the techniques employed by the "Magistri Comacini― Analytica Chimica Acta, 2008, 630, 91-100.	2.6	26
54	Technological features of Renaissance pottery from Deruta (Umbria, Italy): An experimental study. Applied Clay Science, 2006, 33, 230-246.	2.6	27