Kouakou Boniface Kokoh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4971403/publications.pdf

Version: 2024-02-01

156 papers 6,550 citations

50276 46 h-index 76900 74 g-index

159 all docs

159 docs citations

159 times ranked 6977 citing authors

#	Article	IF	CITATIONS
1	IrO ₂ Coated on RuO ₂ as Efficient and Stable Electroactive Nanocatalysts for Electrochemical Water Splitting. Journal of Physical Chemistry C, 2016, 120, 2562-2573.	3.1	414
2	Fourier transform infrared reflectance spectroscopic investigation of the electrocatalytic oxidation of d-glucose: Identification of reactive intermediates and reaction products. Electrochimica Acta, 1996, 41, 701-709.	5.2	216
3	Electrochemical activity of ruthenium and iridium based catalysts for oxygen evolution reaction. Applied Catalysis B: Environmental, 2012, 111-112, 376-380.	20.2	208
4	Electro-reduction of carbon dioxide to formate on lead electrode in aqueous medium. Journal of Applied Electrochemistry, 2009, 39, 227-232.	2.9	172
5	Activity of Platinumâ^'Gold Alloys for Glucose Electrooxidation in Biofuel Cells. Journal of Physical Chemistry B, 2007, 111, 10329-10333.	2.6	168
6	Electroactivity of tin modified platinum electrodes for ethanol electrooxidation. Journal of Power Sources, 2007, 167, 1-10.	7.8	161
7	Carbon-supported ternary PtSnIr catalysts for direct ethanol fuel cell. Electrochimica Acta, 2007, 52, 6997-7006.	5.2	158
8	Electroactivity of RuO2–IrO2 mixed nanocatalysts toward the oxygen evolution reaction in a water electrolyzer supplied by a solar profile. International Journal of Hydrogen Energy, 2014, 39, 16785-16796.	7.1	154
9	Effect of the Oxide–Carbon Heterointerface on the Activity of Co ₃ O ₄ /NRGO Nanocomposites toward ORR and OER. Journal of Physical Chemistry C, 2016, 120, 7949-7958.	3.1	137
10	Toward the Electrochemical Valorization of Glycerol: Fourier Transform Infrared Spectroscopic and Chromatographic Studies. ACS Catalysis, 2013, 3, 2403-2411.	11.2	119
11	Oxygen transport through laccase biocathodes for a membrane-less glucose/O2 biofuel cell. Electrochemistry Communications, 2007, 9, 331-336.	4.7	114
12	Glycerol oxidation on nickel based nanocatalysts in alkaline medium – Identification of the reaction products. Journal of Electroanalytical Chemistry, 2013, 703, 56-62.	3.8	114
13	Electrochemical investigations of the oxidation–reduction of furfural in aqueous medium. Electrochimica Acta, 2004, 49, 397-403.	5.2	113
14	Efficient electrolyzer for CO ₂ splitting in neutral water using earth-abundant materials. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5526-5529.	7.1	105
15	Structural and electrochemical studies of Au–Pt nanoalloys. Physical Chemistry Chemical Physics, 2009, 11, 3573.	2.8	101
16	Studies of the reaction products resulted from glycerol electrooxidation on Ni-based materials in alkaline medium. Electrochimica Acta, 2014, 117, 255-262.	5.2	99
17	Recent Advances in Carbon Supported Metal Nanoparticles Preparation for Oxygen Reduction Reaction in Low Temperature Fuel Cells. Catalysts, 2015, 5, 310-348.	3.5	94
18	On the electrochemical reactivity of anomers: electrocatalytic oxidation of \hat{l}_{\pm} - and \hat{l}_{\pm} -d-glucose on platinum electrodes in acid and basic media. Journal of Electroanalytical Chemistry, 1995, 397, 261-269.	3.8	91

#	Article	IF	CITATIONS
19	Electrosynthesis in aqueous medium: a kinetic study of the electrocatalytic oxidation of oxygenated organic molecules. Electrochimica Acta, 1991, 36, 1157-1164.	5.2	90
20	New Preparation of PdNi/C and PdAg/C Nanocatalysts for Glycerol Electrooxidation in Alkaline Medium. Electrocatalysis, 2013, 4, 167-178.	3.0	88
21	Electrochemically induced surface modifications of mesoporous spinels (Co3O4â^î, MnCo2O4â^î, Tj ETQq1 1 Chemistry A, 2015, 3, 17433-17444.	0.784314 10.3	4 rgBT /Overloc 85
22	Effect of Adding CeO ₂ to RuO ₂ â€"IrO ₂ Mixed Nanocatalysts: Activity towards the Oxygen Evolution Reaction and Stability in Acidic Media. ChemElectroChem, 2015, 2, 1128-1137.	3.4	85
23	Activity of platinum–tin catalysts prepared by the Pechini–Adams method for the electrooxidation of ethanol. Journal of Electroanalytical Chemistry, 2009, 628, 81-89.	3.8	84
24	"On line―chromatographic analysis of the products resulting from the electrocatalytic oxidation of d-glucose on pure and adatoms modified Pt and Au electrodes—Part II. Alkaline medium. Electrochimica Acta, 1992, 37, 1909-1918.	5.2	83
25	FTIR spectroscopy study of the reduction of carbon dioxide on lead electrode in aqueous medium. Applied Catalysis B: Environmental, 2010, 94, 219-224.	20.2	82
26	"On line―chromatographic analysis of the products resulting from the electrocatalytic oxidation of d-glucose on Pt, Au and adatoms modified Pt electrodesâ€"Part I. Acid and neutral media. Electrochimica Acta, 1992, 37, 1333-1342.	5.2	79
27	Effect of W on PtSn/C catalysts for ethanol electrooxidation. Journal of Applied Electrochemistry, 2008, 38, 653-662.	2.9	74
28	Concentric glucose/O2 biofuel cell. Journal of Electroanalytical Chemistry, 2008, 622, 97-102.	3.8	73
29	Advanced Electrocatalysts on the Basis of Bare Au Nanomaterials for Biofuel Cell Applications. ACS Catalysis, 2015, 5, 6489-6496.	11.2	72
30	Enhancing the available specific surface area of carbon supports to boost the electroactivity of nanostructured Pt catalysts. Physical Chemistry Chemical Physics, 2014, 16, 25609-25620.	2.8	71
31	An optimization study of PtSn/C catalysts applied to direct ethanol fuel cell: Effect of the preparation method on the electrocatalytic activity of the catalysts. Journal of Power Sources, 2012, 215, 53-62.	7.8	68
32	One-pot synthesis of reduced graphene oxide supported gold-based nanomaterials as robust nanocatalysts for glucose electrooxidation. Electrochimica Acta, 2016, 212, 864-875.	5.2	62
33	Electroconversion of glycerol in alkaline medium: From generation of energy to formation of value-added products. Journal of Power Sources, 2017, 351, 174-182.	7.8	62
34	Electrocatalytic oxidation of ethanol on Pt–Mo bimetallic electrodes in acid medium. Journal of Applied Electrochemistry, 2006, 36, 1391-1397.	2.9	59
35	Insight on the Surface Structure Effect of Free Gold Nanorods on Glucose Electrooxidation. Journal of Physical Chemistry C, 2013, 117, 9872-9880.	3.1	56
36	Enhancement of the performances of a single concentric glucose/O2 biofuel cell by combination of bilirubin oxidase/Nafion cathode and Au–Pt anode. Electrochemistry Communications, 2009, 11, 111-113.	4.7	55

#	Article	IF	CITATIONS
37	Preparation, characterization and application of Pt–Ru–Sn/C trimetallic electrocatalysts for ethanol oxidation in direct fuel cell. International Journal of Hydrogen Energy, 2011, 36, 11034-11042.	7.1	55
38	Effect of Ni on Pt/C and PtSn/C prepared by the Pechini method. International Journal of Hydrogen Energy, 2011, 36, 3803-3810.	7.1	53
39	Pacemaker Activated by an Abiotic Biofuel Cell Operated in Human Serum Solution. Electroanalysis, 2014, 26, 2445-2457.	2.9	53
40	Kinetic Investigations of Glycerol Oxidation Reaction on Ni/C. Electrocatalysis, 2015, 6, 447-454.	3.0	52
41	Three dimensionally ordered mesoporous hydroxylated Ni _x Co _{3â^3x} O ₄ spinels for the oxygen evolution reaction: on the hydroxyl-induced surface restructuring effect. Journal of Materials Chemistry A, 2017, 5, 7173-7183.	10.3	52
42	Recent advances in the electrooxidation of biomass-based organic molecules for energy, chemicals and hydrogen production. Catalysis Science and Technology, 2020, 10, 3071-3112.	4.1	52
43	Facile synthesis of highly active and durable PdM/C (M = Fe, Mn) nanocatalysts for the oxygen reduction reaction in an alkaline medium. Journal of Materials Chemistry A, 2016, 4, 8337-8349.	10.3	51
44	Advances in Electrocatalysis for Energy Conversion and Synthesis of Organic Molecules. ChemPhysChem, 2017, 18, 2573-2605.	2.1	51
45	Beneficial effects of rhodium and tin oxide on carbon supported platinum catalysts for ethanol electrooxidation. Journal of Power Sources, 2016, 315, 47-55.	7.8	50
46	Electroreduction of carbon dioxide at a lead electrode in propylene carbonate: A spectroscopic study. Applied Catalysis B: Environmental, 2010, 98, 65-71.	20.2	49
47	Direct ethanol fuel cell: Electrochemical performance at 90°C on Pt and PtSn/C electrocatalysts. Journal of Power Sources, 2012, 198, 95-99.	7.8	49
48	Elaboration and characterization of ruthenium nano-oxides for the oxygen evolution reaction in a Proton Exchange Membrane Water Electrolyzer supplied by a solar profile. Electrochimica Acta, 2014, 132, 284-291.	5.2	48
49	Shape-dependent electrocatalytic activity of free gold nanoparticles toward glucose oxidation. Gold Bulletin, 2013, 46, 311-318.	2.4	47
50	Synthesis of Gold-Platinum Nanomaterials Using Bromide Anion Exchange-Synergistic Electroactivity toward CO and Glucose Oxidation. Journal of the Electrochemical Society, 2012, 159, H828-H833.	2.9	45
51	Application of Pt+RuO2 catalysts prepared by thermal decomposition of polymeric precursors to DMFC. Journal of Power Sources, 2006, 158, 1195-1201.	7.8	44
52	Sizeâ€Dependent Electrocatalytic Activity of Free Gold Nanoparticles for the Glucose Oxidation Reaction. ChemPhysChem, 2016, 17, 1454-1462.	2.1	44
53	Au@Pt Coreâ€"Shell Mesoporous Nanoballs and Nanoparticles as Efficient Electrocatalysts toward Formic Acid and Glucose Oxidation. Journal of Physical Chemistry C, 2015, 119, 27529-27539.	3.1	42
54	High impact of the reducing agent on palladium nanomaterials: new insights from X-ray photoelectron spectroscopy and oxygen reduction reaction. RSC Advances, 2016, 6, 12627-12637.	3.6	42

#	Article	IF	CITATIONS
55	Electrochemical characterization of adsorbed bilirubin oxidase on Vulcan XC 72R for the biocathode preparation in a glucose/O2 biofuel cell. Electrochimica Acta, 2010, 55, 7701-7705.	5.2	41
56	Electrocatalytic oxidation of saccharose in alkaline medium. Electrochimica Acta, 1993, 38, 1679-1683.	5.2	40
57	Highly Selective Oxidation of Carbohydrates in an Efficient Electrochemical Energy Converter: Cogenerating Organic Electrosynthesis. ChemSusChem, 2016, 9, 252-263.	6.8	40
58	Electrocatalytic oxidation of acetaldehyde on Pt alloy electrodes. Electrochimica Acta, 2004, 49, 2077-2083.	5.2	37
59	Long-term activity of covalent grafted biocatalysts during intermittent use of a glucose/O2 biofuel cell. Electrochimica Acta, 2009, 54, 2998-3003.	5.2	36
60	Electrocatalytic properties of nanomaterials synthesized from "Bromide Anion Exchange―method - Investigations of glucose and glycerol oxidation. Electrochimica Acta, 2015, 162, 205-214.	5.2	36
61	Probing the Surface of Noble Metals Electrochemically by Underpotential Deposition of Transition Metals. Surfaces, 2019, 2, 257-276.	2.3	36
62	Efficient multi-metallic anode catalysts in a PEM water electrolyzer. International Journal of Hydrogen Energy, 2014, 39, 1924-1931.	7.1	35
63	Temperature-dependence of oxygen reduction activity on Pt/C and PtCr/C electrocatalysts synthesized from microwave-heated diethylene glycol method. Applied Catalysis B: Environmental, 2017, 203, 72-84.	20.2	35
64	On some mechanistic aspects of the electrochemical oxidation of lactose at platinum and gold electrodes in alkaline medium. Journal of Electroanalytical Chemistry, 1997, 426, 103-115.	3.8	34
65	Catalysis and Inhibition in the Electrochemical Reduction of CO ₂ on Platinum in the Presence of Protonated Pyridine. New Insights into Mechanisms and Products. Journal of the American Chemical Society, 2017, 139, 13922-13928.	13.7	33
66	Effect of Coâ€catalyst on the Selective Electrooxidation of Glycerol over Rutheniumâ€based Nanomaterials. ChemElectroChem, 2017, 4, 39-45.	3.4	33
67	The oxidation of formaldehyde on high overvoltage DSA type electrodes. Journal of the Brazilian Chemical Society, 2000, 11, 16-21.	0.6	32
68	Ethanol electrooxidation on Pt-Sn and Pt-Sn-W bulk alloys. Journal of the Brazilian Chemical Society, 2008, 19, 795-802.	0.6	31
69	Electrochemical oxidation of isopropanol using a nickel foam electrode. Journal of Electroanalytical Chemistry, 2014, 716, 120-128.	3.8	31
70	Effect of gradual reduction of graphene oxide on the CO tolerance of supported platinum nanoparticles. Carbon, 2017, 111, 849-858.	10.3	31
71	Selective oxidation of D-gluconic acid on platinum and lead adatoms modified platinum electrodes in alkaline medium. Electrochimica Acta, 1993, 38, 1359-1365.	5.2	30
72	Selective Oxidation of Unprotected Carbohydrates to Aldehyde Analogues by Using TEMPO Salts. European Journal of Organic Chemistry, 2007, 2007, 1567-1570.	2.4	29

#	Article	IF	Citations
7 3	Modeling and simulation of the anode in direct ethanol fuels cells. Journal of Power Sources, 2008, 180, 283-293.	7.8	29
74	Activity of PtSnRh/C nanoparticles for the electrooxidation of C1 and C2 alcohols. Thin Solid Films, 2012, 520, 5846-5850.	1.8	29
7 5	Electrocatalytic oxidation of d-sorbitol on platinum in acid medium: analysis of the reaction products. Journal of Electroanalytical Chemistry, 1997, 432, 237-242.	3.8	27
76	Selective electro-oxidation of d-glucose by RuCl2(azpy)2 complexes as electrochemical mediators. Electrochimica Acta, 2005, 50, 3341-3346.	5 . 2	27
77	Application of Ti/RuO2–Ta2O5 electrodes in the electrooxidation of ethanol and derivants: Reactivity versus electrocatalytic efficiency. Electrochimica Acta, 2008, 53, 7845-7851.	5.2	27
78	TEMPO mediated oxidation of carbohydrates using electrochemical methods. Cellulose, 2010, 17, 815-824.	4.9	26
79	Electrocatalytic oxidation of sucrose: analysis of the reaction products. Journal of Applied Electrochemistry, 1997, 27, 25-33.	2.9	24
80	Electrosynthesis of furan-2,5-dicarbaldehyde by programmed potential electrolysis. Tetrahedron Letters, 2002, 43, 229-231.	1.4	24
81	In situ FTIRS studies of the electrocatalytic oxidation of ethanol on Pt alloy electrodes. Journal of Solid State Electrochemistry, 2007, 11, 1567-1573.	2.5	24
82	Selective oxidation of lactose to lactobionic acid on lead-adatoms modified platinum electrodes in Na2CO3 + NaHCO3 buffered medium. Journal of Electroanalytical Chemistry, 1995, 385, 77-83.	3.8	23
83	Electrocatalytic Activity of Supported Au–Pt Nanoparticles for CO Oxidation and O2 Reduction in Alkaline Medium. Electrocatalysis, 2010, 1, 51-59.	3.0	23
84	Effect of Adding a Third Metal to Carbon-Supported PtSn-Based Nanocatalysts for Direct Ethanol Fuel Cell in Acidic Medium. Journal of the Electrochemical Society, 2013, 160, F965-F971.	2.9	23
85	Insights on Hybrid Glucose Biofuel Cells Based on Bilirubin Oxidase Cathode and Goldâ€Based Anode Nanomaterials. ChemElectroChem, 2014, 1, 1976-1987.	3.4	23
86	Nanostructured Inorganic Materials at Work in Electrochemical Sensing and Biofuel Cells. Catalysts, 2017, 7, 31.	3. 5	23
87	Selective TEMPO atalyzed Chemicals vs. Electrochemical Oxidation of Carbohydrate Derivatives. Journal of Carbohydrate Chemistry, 2006, 25, 253-266.	1.1	22
88	Identification of chemicals resulted in selective glycerol conversion as sustainable fuel on Pd-based anode nanocatalysts. RSC Advances, 2014, 4, 64476-64483.	3.6	22
89	Electrocatalytic activity of carbon-supported metallophthalocyanine catalysts toward oxygen reduction reaction in alkaline solution. Journal of Solid State Electrochemistry, 2016, 20, 931-942.	2.5	22
90	Electrocatalytic and Electroanalytic Investigation of Carbohydrates Oxidation on Gold-Based Nanocatalysts in Alkaline and Neutral pHs. Journal of the Electrochemical Society, 2018, 165, H425-H436.	2.9	21

#	Article	IF	Citations
91	FTIR spectroelectrochemical investigation of the electrocatalytic oxidation of ascorbic acid at platinum electrodes in acid medium. Electrochimica Acta, 2002, 47, 3965-3969.	5.2	20
92	Electrooxidation of benzyl alcohol and benzaldehyde on a nickel oxy-hydroxide electrode in a filter-press type cell. Journal of Applied Electrochemistry, 2006, 36, 1035-1041.	2.9	20
93	Probing Structure Modification of Palladium Nanomaterials during Chemical Synthesis by using Inâ€Situ Xâ€ray Diffraction: Electrochemical Properties. ChemElectroChem, 2015, 2, 592-599.	3.4	20
94	Wireless Information Transmission System Powered by an Abiotic Biofuel Cell Implanted in an Orange. Electroanalysis, 2015, 27, 276-280.	2.9	20
95	Unexpected Activity for Glycerol Electroâ€Oxidation of Nanostructured Pdâ^'Pt and Pdâ^'Ptâ^'Ru Catalysts. ChemElectroChem, 2017, 4, 1314-1319.	3.4	20
96	Metal Loading Effect on the Activity of Co ₃ O ₄ /Nâ€Doped Reduced Graphene Oxide Nanocomposites as Bifunctional Oxygen Reduction/Evolution Catalysts. ChemElectroChem, 2018, 5, 483-493.	3.4	20
97	Kinetic Study of Oxygen Reduction Reaction on Carbon Supported Pd-Based Nanomaterials in Alkaline Medium. Journal of the Electrochemical Society, 2013, 160, H302-H308.	2.9	19
98	Electro-oxidation of lactose on platinum and on modified platinum electrodes in alkaline medium. Electrochimica Acta, 1994, 39, 2577-2584.	5.2	18
99	Electrooxidation of acetaldehyde on platinum-modified Ti/Ru0.3Ti0.7O2 electrodes. Electrochimica Acta, 2006, 51, 2800-2808.	5.2	18
100	Co ₃ O ₄ /rGO Catalysts for Oxygen Electrocatalysis: On the Role of the Oxide/Carbon Interaction. Journal of the Electrochemical Society, 2019, 166, H94-H102.	2.9	18
101	Highly efficient formic acid and carbon dioxide electro-reduction to alcohols on indium oxide electrodes. Sustainable Energy and Fuels, 2020, 4, 4030-4038.	4.9	16
102	Oneâ€Pot Softâ€Template Synthesis of Nanostructured Copperâ€Supported Mesoporous Carbon FDUâ€15 Electrocatalysts for Efficient CO ₂ Reduction. ChemPhysChem, 2018, 19, 1371-1381.	2.1	15
103	Electrosynthesis of lactic acid on copper and lead cathodes in aqueous media. Electrochimica Acta, 2005, 51, 111-117.	5. 2	14
104	Electrochemical Behavior of Organics Oxidation on Palladium-Based Nanocatalysts Synthesized from Bromide Anion Exchange. ECS Transactions, 2014, 58, 25-35.	0.5	14
105	Optimization of Chitosan Film-Templated Biocathode for Enzymatic Oxygen Reduction in Glucose Hybrid Biofuel Cell. Journal of the Electrochemical Society, 2017, 164, G29-G35.	2.9	14
106	One-Step Synthesis of Clean and Size-Controlled Gold Electrocatalysts: Modeling by Taguchi Design of Experiments. Electrocatalysis, 2011, 2, 279-284.	3.0	13
107	Electrospun Carbon Fibers: Promising Electrode Material for Abiotic and Enzymatic Catalysis. Journal of Physical Chemistry C, 2015, 119, 16724-16733.	3.1	13
108	Electrochemical and Physicochemical Characterizations of Gold-Based Nanomaterials: Correlation between Surface Composition and Electrocatalytic Activity. Journal of the Electrochemical Society, 2015, 162, H929-H937.	2.9	13

#	Article	IF	CITATIONS
109	Electrocatalytic oxidation of lactose on gold nanoparticle modified carbon in carbonate buffer. Journal of Applied Electrochemistry, 2006, 36, 147-151.	2.9	12
110	Selective electrocatalytic oxidation of 2,5-dihydroxymethylfuran in aqueous medium: a chromatographic analysis of the reaction products. Electrochimica Acta, 1999, 44, 2779-2787.	5.2	11
111	Selective electroreduction of pyruvic acid on lead electrode in acid medium. Electrochimica Acta, 2005, 50, 2431-2435.	5.2	11
112	The Effect of Heat Treatment on the Preparation of Pt-RuO2/C Electrocatalysts. Electrocatalysis, 2010, 1, 122-128.	3.0	10
113	Complex Oscillatory Kinetics in the Electro-Oxidation of Glucose on Gold. Journal of the Electrochemical Society, 2017, 164, H603-H607.	2.9	10
114	Rhodium effects on Pt anode materials in a direct alkaline ethanol fuel cell. RSC Advances, 2020, 10, 35310-35317.	3.6	10
115	Electrocatalytic oxidation of monosaccharides on platinum electrodes modified by thallium adatoms in carbonate buffered medium. Journal of Applied Electrochemistry, 2006, 36, 233-238.	2.9	9
116	Oxygen Electroreduction Catalyzed by Bilirubin Oxidase Does Not Release Hydrogen Peroxide. Electrocatalysis, 2011, 2, 268-272.	3.0	9
117	Insight into the Electrooxidation Mechanism of Ethylene Glycol on Palladiumâ€Based Nanocatalysts: In Situ FTIRS and LCâ€MS Analysis. ChemElectroChem, 2020, 7, 4326-4335.	3.4	9
118	Bare laser-synthesized palladium–gold alloy nanoparticles as efficient electrocatalysts for glucose oxidation for energy conversion applications. Catalysis Science and Technology, 2020, 10, 7955-7964.	4.1	9
119	Recent trends in hydrogen and oxygen electrocatalysis for anion exchange membrane technologies. Current Opinion in Electrochemistry, 2020, 21, 146-159.	4.8	9
120	Electro-oxidation of meso-erythritol on platinum in acid medium: analysis of the reaction products. Journal of Electroanalytical Chemistry, 1999, 464, 101-109.	3.8	8
121	Activity of sputtered gold particles layers towards glucose electrochemical oxidation in alkaline medium. Current Applied Physics, 2011, 11, 1149-1152.	2.4	8
122	Synthesis of Ru _x lr _{1-x} O ₂ Anode Electrocatalysts for Proton Exchange Membrane Water Electrolysis. ECS Transactions, 2013, 45, 47-58.	0.5	8
123	Reversible Electrocatalytic Activity of Carbonâ€6upported Pt _{<i>x</i>} Ni _{1â°'<i>x</i>} in Hydrogen Reactions. ChemPhysChem, 2016, 17, 3964-3973.	2.1	8
124	Electrochemical hydrogen generation technology: Challenges in electrodes materials for a sustainable energy. Electrochemical Science Advances, 2023, 3, .	2.8	8
125	Effect of the Cleaning Step on the Morphology of Gold Nanoparticles. Electrocatalysis, 2011, 2, 24-27.	3.0	7
126	Electrosynthesis of lactic acid and 2,3-dimethyltartaric acid from pyruvic acid on lead cathode in aqueous medium. Tetrahedron Letters, 2006, 47, 3459-3462.	1.4	6

#	Article	IF	CITATIONS
127	Electrocatalytic oxidation of ethanol on $Sn(1\hat{a}^*x)Ir(x)O2$ electrodes in acid medium. Journal of Applied Electrochemistry, 2008, 38, 837-843.	2.9	6
128	Development of Ternary and Quaternary Catalysts for the Electrooxidation of Glycerol. Scientific World Journal, The, 2012, 2012, 1-6.	2.1	6
129	Electrochemical Energy Conversion from Direct Oxidation of Glucose on Active Electrode Materials. Electrocatalysis, 2020, 11, 170-179.	3.0	6
130	CO ₂ electroreduction to fuels on mesoporous carbon-embedded copper nanoparticles. Sustainable Energy and Fuels, 2020, 4, 6045-6053.	4.9	6
131	Taking Advantage of Teamwork: Unsupported Cobalt Molybdenum Sulfide as an Active HER Electrocatalyst in Alkaline Media. Journal of the Electrochemical Society, 2022, 169, 054524.	2.9	6
132	Preparation and Electrochemical Properties of NiCo ₂ O ₄ Nanospinels Supported on Graphene Derivatives as Earthâ€Abundant Oxygen Bifunctional Catalysts. ChemPhysChem, 2018, 19, 319-326.	2.1	5
133	Electrochemical Oxidation of Carbon Monoxide on Unsupported Gold Nanospheres in Alkaline Medium. Electrocatalysis, 2021, 12, 26-35.	3.0	5
134	An Optimization Study of PtSn/C Nanocatalysts Prepared by Microwave-assisted Heating and Their Application in Direct Ethanol Fuel Cell: A Comparative Study of PtSn/C Nanocatalysts. ECS Transactions, 2011, 41, 1271-1278.	0.5	4
135	Selective Nanomaterials for Glucose-to-Gluconate Oxidation in an Electrochemical Energy Converter: Cogenerating Organic Electrosynthesis. ECS Transactions, 2017, 77, 1547-1557.	0.5	4
136	Electrosynthesis of 2,3-dimethyltartaric acid from pyruvic acid in acid medium. Journal of Applied Electrochemistry, 2006, 36, 643-647.	2.9	3
137	Beneficial Promotion of Underpotentially Deposited Lead Adatoms on Gold Nanorods Toward Glucose Electrooxidation. Electrocatalysis, 2017, 8, 67-73.	3.0	3
138	New insights on the selective electroconversion of the cellulosic biomass-derived glucose at PtAu nanocatalysts in an anion exchange membrane fuel cell. Journal of Electroanalytical Chemistry, 2021, 887, 115162.	3.8	3
139	CO 2 â€toâ€HCOOH Electrochemical Conversion on Nanostructured Cu x Pd 100â^'x /Carbon Catalysts. ChemElectroChem, 2021, 8, 1362-1368.	3.4	3
140	Insights on the C2 and C3 electroconversion in alkaline medium on Rh/C catalyst: in situ FTIR spectroscopic and chromatographic studies. Electrochimica Acta, 2022, 422, 140507.	5.2	3
141	Methanol electro-oxidation at Ptx Ru(1–x)Oy electrodes — An in situ FTIR study. Canadian Journal of Chemistry, 2007, 85, 923-929.	1.1	2
142	Direct Ethanol Fuel Cell on Carbon Supported Pt Based Nanocatalysts. Nanostructure Science and Technology, 2016, , 435-475.	0.1	2
143	Co-Based Mesoporous Spinels for Oxygen Evolution Reaction in Alkaline Medium. ECS Transactions, 2017, 77, 15-24.	0.5	2
144	An FTIR study of the electrooxidation of C2 and C3 alcohols on carbonâ€supported PdxRhy in alkaline medium. ChemElectroChem, 0, , .	3.4	2

#	Article	IF	CITATIONS
145	FTIR spectroscopic investigation of pyruvate electroreduction on copper in alkaline medium $\hat{a}\in$ " On the mechanistic aspects. Canadian Journal of Chemistry, 2008, 86, 992-995.	1.1	1
146	Effect of Acetic Acid on Carbon Monoxide Electrooxidation over Tin Oxide and Rhodium-Modified Platinum Electrode Materials. Electrocatalysis, 2017, 8, 11-15.	3.0	1
147	$ ilde{A}$ % lectrooxydation du m $ ilde{A}$ ©so $ ilde{A}$ ©rythritol sur platine, modifi $ ilde{A}$ © ou non par des adatomes, en milieu acide. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1999, 96, 510-521.	0.2	1
148	Carbon Support Nanostructuration for CO 2 Electroreduction to Formic Acid on Copper Based Catalysts. ECS Transactions, 2017, 77, 1291-1302.	0.5	0
149	Tools and Electrochemical In Situ and On-Line Characterization Techniques for Nanomaterials. , 2018, , 383-439.		O
150	Ensemble effects of nickel in surfactant-less prepared Pt-Ni materials on the carbon monoxide oxidative removal. Journal of Solid State Electrochemistry, 2021, 25, 219-223.	2.5	0
151	(Invited) An Insight into the Reaction Mechanism of Organics on Palladium-Based Electrocatalysts. ECS Meeting Abstracts, 2021, MA2021-01, 1930-1930.	0.0	0
152	Transition Metal Sulfide-Based Electrocatalysts for Hydrogen Evolution Reaction in Alkaline Environment. ECS Meeting Abstracts, 2021, MA2021-01, 1922-1922.	0.0	0
153	Direct Glucose Fuel Cell: Carbon Support Effect on the Anode Nanocatalysts Efficiency. ECS Meeting Abstracts, 2019, , .	0.0	O
154	(Invited) Solid Polymer Fuel Cell and Electrolyzer: The Two Sides of Electrochemical Devices in Sustainable Energy Conversion and Storage. ECS Meeting Abstracts, 2019, , .	0.0	0
155	(Invited) Gold Nanoparticles for Key Reactions in Electrochemical Energy Conversion. ECS Meeting Abstracts, 2020, MA2020-01, 2780-2780.	0.0	O
156	Facile Synthesis of Mesoporous Co3O4/CoO on rGO Nanocomposites as Highly Active and Stable Oxygen Bi-Functional Electrocatalysts. Journal of the Electrochemical Society, 2020, 167, 134509.	2.9	0