Joseph A Hill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4971128/publications.pdf

Version: 2024-02-01

9264 3650 34,391 226 74 180 citations h-index g-index papers 230 230 230 46637 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
3	Transient Regenerative Potential of the Neonatal Mouse Heart. Science, 2011, 331, 1078-1080.	12.6	2,117
4	Control of Stress-Dependent Cardiac Growth and Gene Expression by a MicroRNA. Science, 2007, 316, 575-579.	12.6	1,504
5	Cardiac Plasticity. New England Journal of Medicine, 2008, 358, 1370-1380.	27.0	995
6	Fibrosis â€" A Common Pathway to Organ Injury and Failure. New England Journal of Medicine, 2015, 372, 1138-1149.	27.0	942
7	Class II Histone Deacetylases Act as Signal-Responsive Repressors of Cardiac Hypertrophy. Cell, 2002, 110, 479-488.	28.9	878
8	Hypertrophy of the Heart. Circulation, 2004, 109, 1580-1589.	1.6	763
9	Cardiac autophagy is a maladaptive response to hemodynamic stress. Journal of Clinical Investigation, 2007, 117, 1782-1793.	8.2	672
10	Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes and Development, 2007, 21, 1790-1802.	5.9	619
11	Pathological Ventricular Remodeling. Circulation, 2013, 128, 388-400.	1.6	607
12	Hypoxia induces heart regeneration in adult mice. Nature, 2017, 541, 222-227.	27.8	566
13	Histone Deacetylases 5 and 9 Govern Responsiveness of the Heart to a Subset of Stress Signals and Play Redundant Roles in Heart Development. Molecular and Cellular Biology, 2004, 24, 8467-8476.	2.3	548
14	Ischemia and No Obstructive Coronary Artery Disease (INOCA). Circulation, 2017, 135, 1075-1092.	1.6	527
15	Pathogenesis of Myocardial Ischemia-Reperfusion Injury and Rationale for Therapy. American Journal of Cardiology, 2010, 106, 360-368.	1.6	517
16	Nitrosative stress drives heart failure with preserved ejection fraction. Nature, 2019, 568, 351-356.	27.8	492
17	Activated glycogen synthase-3Â suppresses cardiac hypertrophy in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 907-912.	7.1	446
18	Mitochondrial dynamics, mitophagy and cardiovascular disease. Journal of Physiology, 2016, 594, 509-525.	2.9	441

#	Article	IF	CITATIONS
19	Endoplasmic Reticulum and the Unfolded Protein Response. International Review of Cell and Molecular Biology, 2013, 301, 215-290.	3.2	440
20	Cardiomyocyte Regeneration. Circulation, 2017, 136, 680-686.	1.6	417
21	Impaired Autophagosome Clearance Contributes to Cardiomyocyte Death in Ischemia/Reperfusion Injury. Circulation, 2012, 125, 3170-3181.	1.6	413
22	Regulation of Autophagy by Cytosolic Acetyl-Coenzyme A. Molecular Cell, 2014, 53, 710-725.	9.7	412
23	Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4123-4128.	7.1	360
24	Suppression of Class I and II Histone Deacetylases Blunts Pressure-Overload Cardiac Hypertrophy. Circulation, 2006, 113, 2579-2588.	1.6	328
25	Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice. Journal of Clinical Investigation, 2010, 120, 3912-3916.	8.2	325
26	Spliced X-Box Binding Protein 1 Couples the Unfolded Protein Response to Hexosamine Biosynthetic Pathway. Cell, 2014, 156, 1179-1192.	28.9	317
27	Doxorubicin Blocks Cardiomyocyte Autophagic Flux by Inhibiting Lysosome Acidification. Circulation, 2016, 133, 1668-1687.	1.6	316
28	Autophagy in cardiovascular biology. Journal of Clinical Investigation, 2015, 125, 55-64.	8.2	294
29	Histone Deacetylase Inhibition Blunts Ischemia/Reperfusion Injury by Inducing Cardiomyocyte Autophagy. Circulation, 2014, 129, 1139-1151.	1.6	291
30	Cardiac Hypertrophy Is Not a Required Compensatory Response to Short-Term Pressure Overload. Circulation, 2000, 101, 2863-2869.	1.6	288
31	Foxo Transcription Factors Blunt Cardiac Hypertrophy by Inhibiting Calcineurin Signaling. Circulation, 2006, 114, 1159-1168.	1.6	278
32	Metabolic stress–induced activation of FoxO1 triggers diabetic cardiomyopathy in mice. Journal of Clinical Investigation, 2012, 122, 1109-1118.	8.2	274
33	Enhanced autophagy ameliorates cardiac proteinopathy. Journal of Clinical Investigation, 2013, 123, 5284-5297.	8.2	260
34	Beclin-1-Dependent Autophagy Protects the Heart During Sepsis. Circulation, 2018, 138, 2247-2262.	1.6	255
35	FoxO transcription factors activate Akt and attenuate insulin signaling in heart by inhibiting protein phosphatases. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20517-20522.	7.1	227
36	Intracellular Protein Aggregation Is a Proximal Trigger of Cardiomyocyte Autophagy. Circulation, 2008, 117, 3070-3078.	1.6	218

#	Article	IF	Citations
37	Autophagy is an adaptive response in desmin-related cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9745-9750.	7.1	209
38	Inhibition of Hypertrophy Is a Good Therapeutic Strategy in Ventricular Pressure Overload. Circulation, 2015, 131, 1435-1447.	1.6	188
39	Persistent activation of autophagy in kidney tubular cells promotes renal interstitial fibrosis during unilateral ureteral obstruction. Autophagy, 2016, 12, 976-998.	9.1	187
40	The histone trimethyllysine demethylase JMJD2A promotes cardiac hypertrophy in response to hypertrophic stimuli in mice. Journal of Clinical Investigation, 2011, 121, 2447-2456.	8.2	185
41	Readers, Writers, and Erasers. Circulation Research, 2015, 116, 1245-1253.	4.5	183
42	Autophagy in Load-Induced Heart Disease. Circulation Research, 2008, 103, 1363-1369.	4.5	179
43	Does load-induced ventricular hypertrophy progress to systolic heart failure?. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H8-H16.	3.2	176
44	Autophagy as a therapeutic target in cardiovascular disease. Journal of Molecular and Cellular Cardiology, 2011, 51, 584-593.	1.9	165
45	Obesity, Diabetes, and Cardiovascular Diseases. Circulation Research, 2016, 118, 1703-1705.	4.5	164
46	Cardiovascular autophagy. Autophagy, 2013, 9, 1455-1466.	9.1	162
47	Clearance of damaged mitochondria via mitophagy is important to the protective effect of ischemic preconditioning in kidneys. Autophagy, 2019, 15, 2142-2162.	9.1	157
48	Therapeutic targeting of autophagy in cardiovascular disease. Journal of Molecular and Cellular Cardiology, 2016, 95, 86-93.	1.9	137
49	Cytosolic DNA Sensing Promotes Macrophage Transformation and Governs Myocardial Ischemic Injury. Circulation, 2018, 137, 2613-2634.	1.6	136
50	Guidelines for evaluating myocardial cell death. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H891-H922.	3.2	135
51	STIM1-dependent store-operated Ca2+ entry is required for pathological cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 2012, 52, 136-147.	1.9	133
52	Mitochondrial substrate utilization regulates cardiomyocyte cell-cycle progression. Nature Metabolism, 2020, 2, 167-178.	11.9	131
53	Pathological Ventricular Remodeling. Circulation, 2013, 128, 1021-1030.	1.6	126
54	Energy-preserving effects of IGF-1 antagonize starvation-induced cardiac autophagy. Cardiovascular Research, 2012, 93, 320-329.	3.8	124

#	Article	IF	Citations
55	Diabetic cardiomyopathy: mechanisms and therapeutic targets. Drug Discovery Today Disease Mechanisms, 2010, 7, e135-e143.	0.8	116
56	Doxorubicin-induced cardiomyopathy associated with inhibition of autophagic degradation process and defects in mitochondrial respiration. Scientific Reports, 2019, 9, 2002.	3.3	115
57	The Xbp1s/GalE axis links ER stress to postprandial hepatic metabolism. Journal of Clinical Investigation, 2013, 123, 455-468.	8.2	115
58	Endoplasmic Reticulum Chaperone GRP78 Protects Heart From Ischemia/Reperfusion Injury Through Akt Activation. Circulation Research, 2018, 122, 1545-1554.	4.5	113
59	Autophagy in Hypertensive Heart Disease. Journal of Biological Chemistry, 2010, 285, 8509-8514.	3.4	105
60	Targeted Inhibition of Calcineurin in Pressure-overload Cardiac Hypertrophy. Journal of Biological Chemistry, 2002, 277, 10251-10255.	3.4	104
61	Electrophysiological remodeling in heart failure. Journal of Molecular and Cellular Cardiology, 2010, 48, 619-632.	1.9	104
62	Cardiac Myosin Light Chain Kinase Is Necessary for Myosin Regulatory Light Chain Phosphorylation and Cardiac Performance in Vivo. Journal of Biological Chemistry, 2010, 285, 40819-40829.	3 . 4	103
63	Metabolic inflammation in heart failure with preserved ejection fraction. Cardiovascular Research, 2021, 117, 423-434.	3.8	102
64	Physical and Functional Interaction Between Calcineurin and the Cardiac L-Type Ca ²⁺ Channel. Circulation Research, 2009, 105, 51-60.	4.5	101
65	Fibroblast Primary Cilia Are Required for Cardiac Fibrosis. Circulation, 2019, 139, 2342-2357.	1.6	101
66	NAD ⁺ Repletion Reverses Heart Failure With Preserved Ejection Fraction. Circulation Research, 2021, 128, 1629-1641.	4.5	96
67	Mechanical Unloading Activates FoxO3 to Trigger Bnip3â€Dependent Cardiomyocyte Atrophy. Journal of the American Heart Association, 2013, 2, e000016.	3.7	90
68	An adipo-biliary-uridine axis that regulates energy homeostasis. Science, 2017, 355, .	12.6	90
69	Calcineurin Is Necessary for the Maintenance but Not Embryonic Development of Slow Muscle Fibers. Molecular and Cellular Biology, 2005, 25, 6629-6638.	2.3	88
70	HDAC-dependent ventricular remodeling. Trends in Cardiovascular Medicine, 2013, 23, 229-235.	4.9	87
71	Tuning flux: autophagy as a target of heart disease therapy. Current Opinion in Cardiology, 2011, 26, 216-222.	1.8	81
72	FoxO, Autophagy, and Cardiac Remodeling. Journal of Cardiovascular Translational Research, 2010, 3, 355-364.	2.4	79

#	Article	IF	CITATIONS
73	Histone lysine dimethyl-demethylase KDM3A controls pathological cardiac hypertrophy and fibrosis. Nature Communications, 2018, 9, 5230.	12.8	79
74	Cardiomyocyte ryanodine receptor degradation by chaperone-mediated autophagy. Cardiovascular Research, 2013, 98, 277-285.	3.8	78
75	Na+-Ca2+ Exchanger Remodeling in Pressure Overload Cardiac Hypertrophy. Journal of Biological Chemistry, 2001, 276, 17706-17711.	3.4	77
76	A calcineurin–Hoxb13 axis regulates growth mode of mammalian cardiomyocytes. Nature, 2020, 582, 271-276.	27.8	77
77	Polycystin-1 Is a Cardiomyocyte Mechanosensor That Governs L-Type Ca ²⁺ Channel Protein Stability. Circulation, 2015, 131, 2131-2142.	1.6	71
78	Diabetic cardiomyopathy and metabolic remodeling of the heart. Life Sciences, 2013, 92, 609-615.	4.3	70
79	Endolysosomal twoâ€pore channels regulate autophagy in cardiomyocytes. Journal of Physiology, 2016, 594, 3061-3077.	2.9	70
80	Protein Quality Control and Metabolism: Bidirectional Control in the Heart. Cell Metabolism, 2015, 21, 215-226.	16.2	69
81	Inhibition of class I histone deacetylases blunts cardiac hypertrophy through TSC2-dependent mTOR repression. Science Signaling, 2016, 9, ra34.	3.6	69
82	Electrical Remodeling in Pressure-Overload Cardiac Hypertrophy. Circulation, 2001, 104, 1657-1663.	1.6	67
83	Myocyte Autophagy in Heart Disease: Friend or Foe?. Autophagy, 2007, 3, 632-634.	9.1	64
84	FoxO4 Promotes Early Inflammatory Response Upon Myocardial Infarction via Endothelial Arg1. Circulation Research, 2015, 117, 967-977.	4.5	64
85	Oxidative Stress and Autophagy in Cardiovascular Homeostasis. Antioxidants and Redox Signaling, 2014, 20, 507-518.	5.4	63
86	Electrical Remodeling in Cardiac Hypertrophy. Trends in Cardiovascular Medicine, 2003, 13, 316-322.	4.9	61
87	Differential activation of stress-response signaling in load-induced cardiac hypertrophy and failure. Physiological Genomics, 2005, 23, 18-27.	2.3	59
88	Cardiomyocyte autophagy: Remodeling, repairing, and reconstructing the heart. Current Hypertension Reports, 2009, 11, 406-411.	3.5	59
89	Xbp1s-FoxO1 axis governs lipid accumulation and contractile performance in heart failure with preserved ejection fraction. Nature Communications, 2021, 12, 1684.	12.8	59
90	FHL2 Binds Calcineurin and Represses Pathological Cardiac Growth. Molecular and Cellular Biology, 2012, 32, 4025-4034.	2.3	55

#	Article	IF	Citations
91	Ca2+/Calmodulin-dependent Protein Kinase II-dependent Remodeling of Ca2+ Current in Pressure Overload Heart Failure. Journal of Biological Chemistry, 2008, 283, 25524-25532.	3.4	53
92	Forkhead factor FoxO1 is essential for placental morphogenesis in the developing embryo. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16307-16312.	7.1	52
93	Constitutive Phosphorylation of Cardiac Myosin Regulatory Light Chain in Vivo. Journal of Biological Chemistry, 2015, 290, 10703-10716.	3.4	52
94	Remodeling of Early-Phase Repolarization. Circulation, 2006, 113, 1849-1856.	1.6	51
95	Reversibility of Adverse, Calcineurin-Dependent Cardiac Remodeling. Circulation Research, 2011, 109, 407-417.	4.5	51
96	Challenges Facing Early Career Academic Cardiologists. Journal of the American College of Cardiology, 2014, 63, 2199-2208.	2.8	51
97	Cardiac Autophagy. Journal of Cardiovascular Pharmacology, 2012, 60, 248-252.	1.9	50
98	Cardiomyocyte autophagy and cancer chemotherapy. Journal of Molecular and Cellular Cardiology, 2014, 71, 54-61.	1.9	50
99	Defective insulin signaling and mitochondrial dynamics in diabetic cardiomyopathy. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 1113-1118.	4.1	50
100	Mitochondrial Substrate Utilization Regulates Cardiomyocyte Cell Cycle Progression. Nature Metabolism, 2020, 2, 167-178.	11.9	49
101	Down Syndrome Critical Region 1 Gene, <i>Rcan1</i> , Helps Maintain a More Fused Mitochondrial Network. Circulation Research, 2018, 122, e20-e33.	4.5	47
102	Epigenetic Reader BRD4 (Bromodomain-Containing Protein 4) Governs Nucleus-Encoded Mitochondrial Transcriptome to Regulate Cardiac Function. Circulation, 2020, 142, 2356-2370.	1.6	47
103	Histone deacetylase inhibition in the treatment of heart disease. Expert Opinion on Drug Safety, 2008, 7, 53-67.	2.4	46
104	Organelle communication: Signaling crossroads between homeostasis and disease. International Journal of Biochemistry and Cell Biology, 2014, 50, 55-59.	2.8	46
105	Caveolin-1 impairs PKA-DRP1-mediated remodelling of ER–mitochondria communication during the early phase of ER stress. Cell Death and Differentiation, 2019, 26, 1195-1212.	11.2	46
106	Dimethyl \hat{l}_{\pm} -ketoglutarate inhibits maladaptive autophagy in pressure overload-induced cardiomyopathy. Autophagy, 2014, 10, 930-932.	9.1	45
107	Heart Failure With Preserved Ejection Fraction: Heterogeneous Syndrome, Diverse Preclinical Models. Circulation Research, 2022, 130, 1906-1925.	4.5	45
108	Second statement of the Working Group on Electrocardiographic Diagnosis of Left Ventricular Hypertrophy. Journal of Electrocardiology, 2011, 44, 568-570.	0.9	44

#	Article	IF	Citations
109	Female Sex Is Protective in a Preclinical Model of Heart Failure With Preserved Ejection Fraction. Circulation, 2019, 140, 1769-1771.	1.6	43
110	MuRF2 regulates PPAR $\hat{1}^3$ 1 activity to protect against diabetic cardiomyopathy and enhance weight gain induced by a high fat diet. Cardiovascular Diabetology, 2015, 14, 97.	6.8	40
111	Epigenetic regulation in heart failure. Current Opinion in Cardiology, 2016, 31, 255-265.	1.8	39
112	Cardiomyocyte-derived small extracellular vesicles can signal eNOS activation in cardiac microvascular endothelial cells to protect against Ischemia/Reperfusion injury. Theranostics, 2020, 10, 11754-11774.	10.0	37
113	SF-1 expression in the hypothalamus is required for beneficial metabolic effects of exercise. ELife, 2016, 5, .	6.0	37
114	Remodeling of Outward K+Currents in Pressure-Overload Heart Failure. Journal of Cardiovascular Electrophysiology, 2007, 18, 869-875.	1.7	35
115	Cardioprotection in ischaemia–reperfusion injury: novel mechanisms and clinical translation. Journal of Physiology, 2015, 593, 3773-3788.	2.9	35
116	Cardiomyocyte autophagy: metabolic profit and loss. Heart Failure Reviews, 2013, 18, 585-594.	3.9	34
117	Overexpression of Smooth Muscle Myosin Heavy Chain Leads to Activation of the Unfolded Protein Response and Autophagic Turnover of Thick Filament-associated Proteins in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 2014, 289, 14075-14088.	3.4	34
118	Adipocyte Xbp1s overexpression drives uridine production and reduces obesity. Molecular Metabolism, 2018, 11, 1-17.	6.5	34
119	In Vino Veritas: Alcohol and Heart Disease. American Journal of the Medical Sciences, 2005, 329, 124-135.	1.1	33
120	Recognized Outstanding Reviewers for <i>Circulation</i> in 2021. Circulation, 2022, 145, 4-4.	1.6	33
121	Diminished Cardiac Fibrosis in Heart Failure is Associated with Altered Ventricular Arrhythmia Phenotype. Journal of Cardiovascular Electrophysiology, 2010, 21, 1031-1037.	1.7	32
122	Polycystin-2-dependent control of cardiomyocyte autophagy. Journal of Molecular and Cellular Cardiology, 2018, 118, 110-121.	1.9	32
123	Diabetic Cardiomyopathy. Circulation, 2015, 131, 771-773.	1.6	31
124	Cooperative Binding of ETS2 and NFAT Links Erk1/2 and Calcineurin Signaling in the Pathogenesis of Cardiac Hypertrophy. Circulation, 2021, 144, 34-51.	1.6	30
125	The CCAAT/Enhancer Binding Protein β (C/EBPβ) Cooperates with NFAT to Control Expression of the Calcineurin Regulatory Protein RCAN1–4. Journal of Biological Chemistry, 2010, 285, 16623-16631.	3.4	29
126	Autophagy in Cardiac Plasticity and Disease. Pediatric Cardiology, 2011, 32, 282-289.	1.3	29

#	Article	IF	Citations
127	Calcineurin-dependent ion channel regulation in heart. Trends in Cardiovascular Medicine, 2014, 24, 14-22.	4.9	29
128	A call to action for new global approaches to cardiovascular disease drug solutions. European Heart Journal, 2021, 42, 1464-1475.	2.2	29
129	Guidelines for Translational Research in Heart Failure. Journal of Cardiovascular Translational Research, 2015, 8, 3-22.	2.4	28
130	Is Load-Induced Ventricular Hypertrophy Ever Compensatory?. Circulation, 2017, 136, 1273-1275.	1.6	28
131	Polycystin-1 Assembles With Kv Channels to Govern Cardiomyocyte Repolarization and Contractility. Circulation, 2019, 140, 921-936.	1.6	28
132	Activation of Autophagic Flux Blunts Cardiac Ischemia/Reperfusion Injury. Circulation Research, 2021, 129, 435-450.	4.5	28
133	Spermidine Promotes Cardioprotective Autophagy. Circulation Research, 2017, 120, 1229-1231.	4.5	27
134	The Academic Medical System. Journal of the American College of Cardiology, 2017, 69, 1305-1312.	2.8	27
135	Status of Early-Career Academic Cardiology. Journal of the American College of Cardiology, 2017, 70, 2290-2303.	2.8	27
136	Immunometabolic mechanisms of heart failure with preserved ejection fraction., 2022, 1, 211-222.		27
137	FoxO1–Dio2 signaling axis governs cardiomyocyte thyroid hormone metabolism and hypertrophic growth. Nature Communications, 2020, 11, 2551.	12.8	26
138	ATF4 Protects the Heart From Failure by Antagonizing Oxidative Stress. Circulation Research, 2022, 131, 91-105.	4.5	26
139	Matricellular Protein Cilp1 Promotes Myocardial Fibrosis in Response to Myocardial Infarction. Circulation Research, 2021, 129, 1021-1035.	4.5	23
140	Chronic heart failure: Ca 2+, catabolism, and catastrophic cell death. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 763-777.	3.8	21
141	PKD2/polycystin-2 induces autophagy by forming a complex with BECN1. Autophagy, 2021, 17, 1714-1728.	9.1	21
142	Hypertrophic reprogramming of the left ventricle: translation to the ECG. Journal of Electrocardiology, 2012, 45, 624-629.	0.9	19
143	Braking Bad Hypertrophy. New England Journal of Medicine, 2015, 372, 2160-2162.	27.0	19
144	HDAC inhibition as a therapeutic strategy in myocardial ischemia/reperfusion injury. Journal of Molecular and Cellular Cardiology, 2019, 129, 188-192.	1.9	19

#	Article	IF	CITATIONS
145	Transient-Outward K+ Channel Inhibition Facilitates L-Type Ca2+ Current in Heart. Journal of Cardiovascular Electrophysiology, 2006, 17, 298-304.	1.7	18
146	RalGDS-dependent cardiomyocyte autophagy is required for load-induced ventricular hypertrophy. Journal of Molecular and Cellular Cardiology, 2013, 59, 128-138.	1.9	18
147	Muscle ring finger-3 protects against diabetic cardiomyopathy induced by a high fat diet. BMC Endocrine Disorders, 2015, 15, 36.	2.2	18
148	A Call to Action for New Global Approaches to Cardiovascular Disease Drug Solutions. Circulation, 2021, 144, 159-169.	1.6	18
149	How to Review a Manuscript. Journal of Electrocardiology, 2016, 49, 109-111.	0.9	17
150	Titrating autophagy in cardiac plasticity. Autophagy, 2011, 7, 1078-1079.	9.1	16
151	The heart of autophagy: Deconstructing cardiac proteotoxicity. Autophagy, 2008, 4, 932-935.	9.1	15
152	Chapter 17 Autophagy in Loadâ€Induced Heart Disease. Methods in Enzymology, 2009, 453, 343-363.	1.0	15
153	An integrated mechanism of cardiomyocyte nuclear Ca2+ signaling. Journal of Molecular and Cellular Cardiology, 2014, 75, 40-48.	1.9	15
154	The 4th Report of the Working Group on ECG diagnosis of Left Ventricular Hypertrophy. Journal of Electrocardiology, 2017, 50, 11-15.	0.9	15
155	Seeing is believing. Autophagy, 2014, 10, 691-693.	9.1	14
156	Role of FoxO3a as a negative regulator of the cardiac myofibroblast conversion induced by TGF- \hat{l}^21 . Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118695.	4.1	12
157	Spironolactone Therapy is Associated with Reduced Ventricular Tachycardia Rate in Patients with Cardiomyopathy. PACE - Pacing and Clinical Electrophysiology, 2011, 34, 309-314.	1.2	11
158	Metabolic control and oxidative stress in pathological cardiac remodelling. European Heart Journal, 2017, 38, ehw199.	2.2	11
159	Can HFpEF and HFrEF Coexist?. Circulation, 2020, 141, 709-711.	1.6	11
160	Copper Futures. Circulation Research, 2014, 114, 1678-1680.	4.5	10
161	Mechanism of Eccentric Cardiomyocyte Hypertrophy Secondary to Severe Mitral Regurgitation. Circulation, 2020, 141, 1787-1799.	1.6	10
162	Regulation of cardiomyocyte autophagy by calcium. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E587-E596.	3.5	9

#	Article	IF	Citations
163	Pharmacological Priming of Adipose-Derived Stem Cells Promotes Myocardial Repair. Journal of Investigative Medicine, 2016, 64, 50-62.	1.6	9
164	Preprints and Cardiovascular Science. Circulation, 2017, 136, 1177-1179.	1.6	8
165	FoxO1 in embryonic development. Transcription, 2012, 3, 221-225.	3.1	7
166	High-sugar feeding and increasing cholesterol levels in infants. European Heart Journal, 2021, 42, 1132-1135.	2.2	7
167	NEMO Nuances NF-κB. Circulation Research, 2010, 106, 10-12.	4.5	6
168	Fli1 Promotes Vascular Morphogenesis by Regulating Endothelial Potential of Multipotent Myogenic Progenitors. Circulation Research, 2021, 129, 949-964.	4.5	5
169	Funny and Late: Targeting Currents Governing Heart Rate in Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 2015, 26, 336-338.	1.7	4
170	Notes From the Incoming Editor. Circulation, 2016, 133, 1300-1301.	1.6	4
171	Notes From the Incoming Editor. Circulation, 2016, 133, 768-769.	1.6	4
172	Inaugural Go Red for Women Issue. Circulation, 2017, 135, 493-494.	1.6	4
173	Preprints and Cardiovascular Science. Circulation: Cardiovascular Quality and Outcomes, 2017, 10, .	2.2	4
174	Ischemic Stroke Mandates Cross-Disciplinary Collaboration. Circulation, 2018, 137, 103-105.	1.6	4
175	Impaired AMP-Activated Protein Kinase Signaling in Heart Failure With Preserved Ejection Fraction–Associated Atrial Fibrillation. Circulation, 2022, 146, 73-76.	1.6	4
176	Ca2+ Leak in Atrial Fibrillation. Journal of the American College of Cardiology, 2013, 62, 2020-2022.	2.8	3
177	Parkin Gone Wild. Circulation Research, 2015, 117, 311-313.	4.5	3
178	Notes from the Incoming Editor. Circulation, 2016, 133, 1713-1714.	1.6	3
179	Reflections of the Editor-in-Chief. Circulation, 2017, 136, 613-614.	1.6	3
180	Ischemic Stroke Mandates Cross-Disciplinary Collaboration. Stroke, 2018, 49, 273-274.	2.0	3

#	Article	IF	Citations
181	Medical Misinformation: Vet the Message!. Cardiology, 2019, 142, 63-65.	1.4	3
182	Medical misinformation: vet the message!. Journal of Interventional Cardiac Electrophysiology, 2019, $55,1$ -3.	1.3	3
183	When the CAR Targets Scar. New England Journal of Medicine, 2019, 381, 2475-2476.	27.0	3
184	Publications Simultaneous With Meeting Presentation. Circulation, 2019, 139, 307-309.	1.6	3
185	Disparities in Cardiovascular Medicine: Circulation's Response. Circulation, 2020, 142, 1127-1128.	1.6	3
186	Fourth Annual Go Red for Women Issue. Circulation, 2020, 141, 499-500.	1.6	3
187	Metabolism and Inflammation in Cardiovascular Health and Diseases: Mechanisms to Therapies. Journal of Molecular and Cellular Cardiology, 2021, 157, 113-114.	1.9	3
188	Sixth Annual Go Red for Women Issue. Circulation, 2022, 145, 489-490.	1.6	3
189	Cardiovascular scholarly challenges following the Russian invasion of Ukraine. Minerva Cardiology and Angiology, 2022, 70, .	0.7	3
190	HDACs and Hypertrophy, Kinases and Cancer. Circulation, 2011, 123, 2341-2343.	1.6	2
191	Ionic Fluxes and Genesis of the Cardiac Action Potential. , 2012, , 67-85.		2
192	"Pound-Years― Circulation Research, 2017, 120, 1533-1534.	4.5	2
193	Second Annual Go Red for Women Issue. Circulation, 2018, 137, 761-762.	1.6	2
194	Circulation Global Rounds. Circulation, 2018, 138, 10-11.	1.6	2
195	Medical Misinformation: Vet the Message!. Cardiovascular Drugs and Therapy, 2019, 33, 275-276.	2.6	2
196	Medical Misinformation: Vet the Message!. European Heart Journal: Acute Cardiovascular Care, 2019, 8, 5-7.	1.0	2
197	Medical Misinformation. Thoracic and Cardiovascular Surgeon, 2019, 67, 080-082.	1.0	2
198	Muscleâ€Specific Ubiquitin Ligase MuRF1 Regulates Myocardial Autophagic Flux in vivo. FASEB Journal, 2015, 29, 148.8.	0.5	2

#	Article	IF	CITATIONS
199	Cardiac Plasticity in Health and Disease. , 2012, , 185-250.		1
200	Mechanisms of Stress-Induced Cardiac Hypertrophy. , 2012, , 481-494.		1
201	Ca ²⁺ in the Cleft. Circulation Research, 2014, 115, 326-328.	4.5	1
202	Notes From the Incoming Editor. Circulation, 2016, 133, 2215-2216.	1.6	1
203	Response by Nallamothu and Hill to Letter Regarding Article, "Preprints and Cardiovascular Science: Prescient or Premature?― Circulation, 2018, 137, 1643-1644.	1.6	1
204	Third Annual Go Red for Women Issue. Circulation, 2019, 139, 999-1000.	1.6	1
205	Medical misinformation: vet the message!. PACE - Pacing and Clinical Electrophysiology, 2019, 42, 299-300.	1.2	1
206	Science in a Time of Crisis. Circulation, 2020, 141, 1277-1278.	1.6	1
207	Cardiovascular Science India Tour. Circulation, 2020, 141, 159-160.	1.6	1
208	Fifth Annual Go Red for Women Issue. Circulation, 2021, 143, 613-614.	1.6	1
209	Cardiometabolic HFpEF: Mechanisms and Therapies. Cardiometabolic Syndrome Journal, 2021, 1, 117.	0.6	1
210	Cardiac Autophagy and Its Regulation by Reversible Protein Acetylation. Cardiac and Vascular Biology, 2016, , 231-262.	0.2	1
211	Vision for the New <i>Circulation</i> . Circulation, 2016, 134, 3-5.	1.6	1
212	Molecular Mechanisms of Cardiac Hypertrophy and Failure. Circulation, 2006, 113, .	1.6	0
213	Autophagy in Cardiac Physiology and Disease. , 2012, , 405-422.		0
214	Circulation 's Vision for Cardiac Surgery. Circulation, 2016, 134, 1203-1204.	1.6	0
215	Bridging Disciplines. Circulation, 2017, 135, 1277-1278.	1.6	0
216	Epigenetic control of lipid metabolism: implications for lifespan and healthspan. Cardiovascular Research, 2018, 114, e33-e35.	3.8	0

#	Article	IF	CITATIONS
217	Medical misinformation: vet the message!. European Journal of Heart Failure, 2019, 21, 264-265.	7.1	0
218	Recognized Outstanding Reviewers for Circulation in 2019. Circulation, 2019, 140, 2047-2047.	1.6	0
219	Molecular Basis of Heart Failure. , 2020, , 1-27.e3.		0
220	Recognized Outstanding Reviewers for Circulation in 2020. Circulation, 2020, 142, 1885-1886.	1.6	0
221	James T. Willerson, MD. Circulation, 2021, 143, 1537-1538.	1.6	0
222	Medical Misinformation: Vet the Message!. Anatolian Journal of Cardiology, 2019, 21, 58-59.	0.9	0
223	Abstract 14412: Activation of Autophagic Flux Maintains Mitochondrial Homeostasis During Cardiac Ischemia/reperfusion Injury. Circulation, 2020, 142, .	1.6	0
224	Celebrating The Next Generation of Cardiovascular Investigators. Circulation, 2022, 145, 91-93.	1.6	0
225	<i>Circulation</i> Best Papers 2021. Circulation, 2022, 145, 1441-1442.	1.6	0
226	Abstract 8914: Selective Phosphodiesterase-9 Inhibition With IMR-687 Mitigates Cardiac Hypertrophy and Renal Injury in Preclinical Mouse Models of Heart Failure With Preserved Ejection Fraction. Circulation, 2021, 144, .	1.6	0