Nelson Lam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4970754/publications.pdf

Version: 2024-02-01

218381 253896 2,664 138 26 43 citations h-index g-index papers 140 140 140 1342 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Displacement-based seismic analysis for out-of-plane bending of unreinforced masonry walls. Earthquake Engineering and Structural Dynamics, 2002, 31, 833-850.	2.5	239
2	Experimental Investigation of Unreinforced Brick Masonry Walls in Flexure. Journal of Structural Engineering, 2004, 130, 423-432.	1.7	141
3	Cyclic testing of unreinforced masonry walls in two-way bending. Earthquake Engineering and Structural Dynamics, 2007, 36, 801-821.	2.5	108
4	GENERATION OF SYNTHETIC EARTHQUAKE ACCELEROGRAMS USING SEISMOLOGICAL MODELLING: A REVIEW. Journal of Earthquake Engineering, 2000, 4, 321-354.	1.4	97
5	Near-surface attenuation modelling based on rock shear-wave velocity profile. Soil Dynamics and Earthquake Engineering, 2006, 26, 1004-1014.	1.9	95
6	Time–history analysis of URM walls in out-of-plane flexure. Engineering Structures, 2003, 25, 743-754.	2.6	66
7	Response spectral relationships for rock sites derived from the component attenuation model. Earthquake Engineering and Structural Dynamics, 2000, 29, 1457-1489.	2.5	56
8	Response spectrum modelling for rock sites in low and moderate seismicity regions combining velocity, displacement and acceleration predictions. Earthquake Engineering and Structural Dynamics, 2000, 29, 1491-1525.	2.5	53
9	Performance-based design in earthquake engineering: a multi-disciplinary review. Engineering Structures, 2001, 23, 1525-1543.	2.6	52
10	Collapse of Reinforced Concrete Column by Vehicle Impact. Computer-Aided Civil and Infrastructure Engineering, 2008, 23, 427-436.	6.3	52
11	Analysis of long-distance earthquake tremors and base shear demand for buildings in Singapore. Engineering Structures, 2002, 24, 99-108.	2.6	48
12	Seismic displacement response spectrum estimated from the frame analogy soil amplification model. Engineering Structures, 2001, 23, 1437-1452.	2.6	43
13	Contact forces generated by hailstone impact. International Journal of Impact Engineering, 2015, 84, 145-158.	2.4	43
14	Displacement controlled rocking behaviour of rigid objects. Earthquake Engineering and Structural Dynamics, 2011, 40, 1653-1669.	2.5	40
15	Influence of non-structural components on lateral stiffness of tall buildings. Structural Design of Tall and Special Buildings, 2005, 14, 143-164.	0.9	37
16	The ductility reduction factor in the seismic design of buildings. Earthquake Engineering and Structural Dynamics, 1998, 27, 749-769.	2.5	35
17	Shear wave velocity modelling in crustal rock for seismic hazard analysis. Soil Dynamics and Earthquake Engineering, 2005, 25, 167-185.	1.9	35
18	Deterministic solutions for contact force generated by impact of windborne debris. International Journal of Impact Engineering, 2016, 91, 126-141.	2.4	34

#	Article	IF	CITATIONS
19	Dynamic loading on a prefabricated modular unit of a building during road transportation. Journal of Building Engineering, $2018, 18, 260-269$.	1.6	34
20	Regional and local factors in attenuation modelling: Hong Kong case study. Journal of Asian Earth Sciences, 2006, 27, 892-906.	1.0	32
21	Rapid assessment of seismic demand in existing building structures. Structural Design of Tall and Special Buildings, 2009, 18, 427-439.	0.9	32
22	EVALUATION OF SIMPLIFIED METHODS OF ESTIMATING BEAM RESPONSES TO IMPACT. International Journal of Structural Stability and Dynamics, 2012, 12, 1250016.	1.5	32
23	Response spectrum predictions for potential near-field and far-field earthquakes affecting Hong Kong: soil sites. Soil Dynamics and Earthquake Engineering, 2002, 22, 419-440.	1.9	29
24	Estimation of strengths in large annealed glass panels. International Journal of Solids and Structures, 2010, 47, 2591-2599.	1.3	28
25	Drift performance of lightly reinforced concrete columns. Engineering Structures, 2014, 59, 522-535.	2.6	28
26	Response spectrum predictions for potential near-field and far-field earthquakes affecting Hong Kong: rock sites. Soil Dynamics and Earthquake Engineering, 2002, 22, 47-72.	1.9	27
27	ESTIMATION OF RESPONSE OF PLATE STRUCTURE SUBJECT TO LOW VELOCTIY IMPACT BY A SOLID OBJECT. International Journal of Structural Stability and Dynamics, 2012, 12, 1250053.	1.5	27
28	Scenario predictions for potential near-field and far-field earthquakes affecting Hong Kong. Soil Dynamics and Earthquake Engineering, 2002, 22, 29-46.	1.9	26
29	RC walls in Australia: reconnaissance survey of industry and literature review of experimental testing. Australian Journal of Structural Engineering, 2017, 18, 24-40.	0.4	26
30	Estimating non-linear site response by single period approximation. Earthquake Engineering and Structural Dynamics, 2006, 35, 1053-1076.	2.5	25
31	Yield curvature for seismic design of circular reinforced concrete columns. Magazine of Concrete Research, 2010, 62, 741-748.	0.9	25
32	Conversion between Peak Ground Motion Parameters and Modified Mercalli Intensity Values. Journal of Earthquake Engineering, 2011, 15, 1138-1155.	1.4	25
33	Intensity attenuation relationship for the South China region and comparison with the component attenuation model. Journal of Asian Earth Sciences, 2002, 20, 775-790.	1.0	24
34	Ground motion modelling in Tehran based on the stochastic method. Soil Dynamics and Earthquake Engineering, 2010, 30, 525-535.	1.9	24
35	A recommended earthquake response spectrum model for Australia. Australian Journal of Structural Engineering, 2003, 5, 17-27.	0.4	23
36	Simple models for estimating period-shift and damping in soil. Earthquake Engineering and Structural Dynamics, 2006, 35, 1925-1947.	2.5	23

#	Article	IF	CITATIONS
37	A design spectrum model for flexible soil sites in regions of low-to-moderate seismicity. Soil Dynamics and Earthquake Engineering, 2017, 92, 36-45.	1.9	21
38	Minimum loading requirements for areas of low seismicity. Earthquake and Structures, 2016, 11, 539-561.	1.0	21
39	Earthquake Design of Buildings in Australia Using Velocity and Displacement Principles. Australian Journal of Structural Engineering, 2006, 6, 103-118.	0.4	19
40	A note on Hunt and Crossley model with generalized visco-elastic damping. International Journal of Impact Engineering, 2018, 121, 151-156.	2.4	19
41	A SIMPLE DISPLACEMENT-BASED MODEL FOR PREDICTING SEISMICALLY INDUCED OVERTURNING. Journal of Earthquake Engineering, 2006, 10, 775-814.	1.4	18
42	Collapse modelling analysis of a precast soft storey building in Australia. Engineering Structures, 2010, 32, 1925-1936.	2.6	18
43	Displacement-Based Approach for the Assessment of Overturning Stability of Rectangular Rigid Barriers Subjected to Point Impact. Journal of Engineering Mechanics - ASCE, 2018, 144, .	1.6	18
44	Seismic assessment of transfer plate high rise buildings. Structural Engineering and Mechanics, 2002, 14, 287-306.	1.0	18
45	SIMULATIONS OF RESPONSE TO LOW VELOCITY IMPACT BY SPREADSHEET. International Journal of Structural Stability and Dynamics, 2010, 10, 483-499.	1.5	17
46	Bi-linear displacement response spectrum model for engineering applications in low and moderate seismicity regions. Soil Dynamics and Earthquake Engineering, 2012, 43, 85-96.	1.9	17
47	Seismic performance of lightly reinforced structural walls for design purposes. Magazine of Concrete Research, 2013, 65, 809-828.	0.9	17
48	Drift Performance of Point Fixed Glass Façade Systems. Advances in Structural Engineering, 2014, 17, 1481-1495.	1.2	17
49	Effects of podium interference on shear force distributions in tower walls supporting tall buildings. Engineering Structures, 2017, 148, 639-659.	2.6	17
50	An Adaptive Ground Motion Prediction Equation for Use in Low-to-Moderate Seismicity Regions. Journal of Earthquake Engineering, 2022, 26, 2567-2598.	1.4	17
51	An attenuation model for distant earthquakes. Earthquake Engineering and Structural Dynamics, 2004, 33, 183-210.	2.5	16
52	Inelastic Displacement Demand of Strength-Degraded Structures. Journal of Earthquake Engineering, 2010, 14, 487-511.	1.4	16
53	Contact forces generated by fallen debris. Structural Engineering and Mechanics, 2014, 50, 589-603.	1.0	16
54	Characterization of Sandstone for Application in Blast Analysis of Tunnel. Geotechnical Testing Journal, 2020, 43, 351-382.	0.5	16

#	Article	IF	CITATIONS
55	Damage modelling of aluminium panels impacted by windborne debris. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 165, 1-12.	1.7	15
56	Experiments on an ice ball impacting onto a rigid target. International Journal of Impact Engineering, 2022, 167, 104281.	2.4	15
57	Risks of failure of annealed glass panels subject to point contact actions. International Journal of Solids and Structures, 2017, 129, 177-194.	1.3	14
58	Framework for seismic vulnerability assessment of reinforced concrete buildings in Australia. Australian Journal of Structural Engineering, 2019, 20, 143-158.	0.4	14
59	Force-deformation behaviour modelling of cracked reinforced concrete by EXCEL spreadsheets. Computers and Concrete, 2011, 8, 43-57.	0.7	14
60	Generic Approach for Modelling Earthquake Hazard. Advances in Structural Engineering, 2006, 9, 67-82.	1.2	13
61	Modeling shear rigidity of stratified bedrock in site response analysis. Soil Dynamics and Earthquake Engineering, 2012, 34, 89-98.	1.9	13
62	Drift behaviour of lightly reinforced concrete columns and structural walls for seismic design applications. Australian Journal of Structural Engineering, 2015, 16, .	0.4	13
63	Computer Simulation of Contact Forces Generated by Impact. International Journal of Structural Stability and Dynamics, 2017, 17, 1750005.	1.5	13
64	Overturning stability of L-shaped rigid barriers subjected to rockfall impacts. Landslides, 2018, 15, 1347-1357.	2.7	13
65	Rocking Behavior of Irregular Free-Standing Objects Subjected to Earthquake Motion. Journal of Earthquake Engineering, 2019, 23, 793-809.	1.4	13
66	Deterministic seismic hazard parameters and engineering risk implications for the Hong Kong region. Journal of Asian Earth Sciences, 2001, 20, 59-72.	1.0	12
67	Out-of-plane performance of a brick veneer steel-framed house subjected to seismic loads. Construction and Building Materials, 2012, 28, 779-790.	3.2	12
68	A Numerical Investigation of the Performance of a Nacre-Like Composite under Blast Loading. Applied Mechanics and Materials, 2016, 846, 464-469.	0.2	12
69	RC walls in Australia: seismic design and detailing to AS 1170.4 and AS 3600. Australian Journal of Structural Engineering, 2018, 19, 67-84.	0.4	12
70	Title is missing!. Journal of Earthquake Engineering, 2000, 4, 321.	1.4	11
71	Peak displacement demand of small to moderate magnitude earthquakes in stable continental regions. Earthquake Engineering and Structural Dynamics, 2005, 34, 1047-1072.	2.5	11
72	Collapse Modelling of Soft-Storey Buildings. Australian Journal of Structural Engineering, 2009, 10, 11-23.	0.4	11

#	Article	IF	CITATIONS
73	Seismic Performance Behavior of Cold-Formed Steel Wall Panels by Quasi-static Tests and Incremental Dynamic Analyses. Journal of Earthquake Engineering, 2017, 21, 411-438.	1.4	11
74	Probabilistic modelling of forces of hail. Natural Hazards, 2018, 91, 133-153.	1.6	11
75	Effects of cyclic loading on the long-term deflection of prestressed concrete beams. Computers and Concrete, 2013, 12, 739-754.	0.7	11
76	Seismic load estimates of distant subduction earthquakes affecting Singapore. Engineering Structures, 2009, 31, 1230-1240.	2.6	10
77	Displacement-Controlled Behavior of Asymmetrical Single-Story Building Models. Journal of Earthquake Engineering, 2013, 17, 902-917.	1.4	10
78	In-Plane Drift Capacity of Contemporary Point Fixed Glass Facade Systems. Journal of Architectural Engineering, 2014, 20, .	0.8	10
79	Seismic assessment of cold-formed steel stud bracing wall panels using direct displacement based design approach. Bulletin of Earthquake Engineering, 2017, 15, 1261-1277.	2.3	10
80	Experimental and Analytical Investigation of a RC Wall with a Gabion Cushion Subjected to Boulder Impact. International Journal of Impact Engineering, 2021, 151, 103823.	2.4	10
81	Site-Specific Response Spectra: Guidelines for Engineering Practice. CivilEng, 2021, 2, 712-735.	0.8	10
82	Review of the torsional coupling of asymmetrical wall-frame buildings. Engineering Structures, 1997, 19, 233-246.	2.6	9
83	Regional differences in attenuation modelling for Eastern China. Journal of Asian Earth Sciences, 2010, 39, 441-459.	1.0	9
84	Probabilistic modelling of Hertzian fracture of glass by flying objects impact in bad weather. International Journal of Impact Engineering, 2018, 118, 11-23.	2.4	9
85	Contact force generated by impact of boulder on concrete surface. International Journal of Impact Engineering, 2019, 132, 103324.	2.4	9
86	The Selection and Scaling of Ground Motion Accelerograms for Use in Stable Continental Regions. Journal of Earthquake Engineering, 2022, 26, 6284-6303.	1.4	9
87	Overturning of precast RC columns in conditions of moderate ground shaking. Earthquake and Structures, 2015, 8, 1-18.	1.0	9
88	BUILDING DUCTILITY DEMAND: INTERPLATE VERSUS INTRAPLATE EARTHQUAKES. Earthquake Engineering and Structural Dynamics, 1996, 25, 965-985.	2.5	8
89	Displacement-Based Assessment of the Seismic Capacity of Unreinforced Masonry Walls in Bending. Australian Journal of Structural Engineering, 2006, 6, 119-132.	0.4	8
90	Progressive Collapse Analysis of RC Frames Subjected to Blast Loading. Australian Journal of Structural Engineering, 2006, 7, 47-55.	0.4	8

#	Article	IF	Citations
91	Drift Capacity of a Precast Soft-Storey Building in Melbourne. Australian Journal of Structural Engineering, 2010, 11, 177-193.	0.4	8
92	A refined design spectrum model for regions of lower seismicity. Australian Journal of Structural Engineering, 2017, 18, 3-10.	0.4	8
93	Use of static tests for predicting damage to cladding panels caused by storm debris. Journal of Building Engineering, 2017, 12, 109-117.	1.6	8
94	Use of Macroseismic Intensity Data to Validate a Regionally Adjustable Ground Motion Prediction Model. Geosciences (Switzerland), 2019, 9, 422.	1.0	8
95	Modelling of seismic actions in earth retaining walls and comparison with shaker table experiment. Soil Dynamics and Earthquake Engineering, 2021, 150, 106939.	1.9	8
96	DisplacementÂbased seismic assessment of base restrained retaining walls. Acta Geotechnica, 2022, 17, 3675-3694.	2.9	8
97	Impact Resistance of Annealed Glass Panels. Journal of Performance of Constructed Facilities, 2011, 25, 422-432.	1.0	7
98	AN INNOVATIVE PROCEDURE FOR ESTIMATING CONTACT FORCE DURING IMPACT. International Journal of Applied Mechanics, 2014, 06, 1450079.	1.3	7
99	Analytical study of point fixed glass fa \tilde{A} sade systems under monotonic in-plane loading. Advances in Structural Engineering, 2016, 19, 611-626.	1.2	7
100	A Computational Tool for Ground-Motion Simulations Incorporating Regional Crustal Conditions. Seismological Research Letters, 2021, 92, 1129-1140.	0.8	7
101	Experimental testing of reinforced concrete walls in regions of lower seismicity. Bulletin of the New Zealand Society for Earthquake Engineering, 2017, 50, 494-503.	0.2	7
102	Vehicle–road interaction analysis for pounding between cargo and trailer-bed. Vehicle System Dynamics, 2021, 59, 547-567.	2.2	7
103	SIMPLIFIED ANALYSIS OF LOW VELOCITY IMPACT ACTIONS ON SHALLOW DOMES. International Journal of Applied Mechanics, 2013, 05, 1350013.	1.3	6
104	Review of modern concepts in the engineering interpretation of earthquake response spectra. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2001, 146, 75-84.	0.4	5
105	Simplified displacement demand prediction of tall asymmetric buildings subjected to long-distance earthquakes. Engineering Structures, 2005, 27, 335-348.	2.6	5
106	Behaviour of plasterboard-lined steel-framed ceiling diaphragms. Thin-Walled Structures, 2019, 141, 1-14.	2.7	5
107	Modelling of seismically induced storey-drift in buildings. Structural Engineering and Mechanics, 2010, 35, 459-478.	1.0	5
108	Drift Demand Predictions in Low to Moderate Seismicity Regions. Australian Journal of Structural Engineering, 2010, 11, 195-206.	0.4	4

#	Article	IF	Citations
109	Simplified elastic design checks for torsionally balanced and unbalanced low-medium rise buildings in lower seismicity regions. Earthquake and Structures, 2016, 11, 741-777.	1.0	4
110	Selection of earthquake ground motion accelerograms for structural design in Hong Kong. Advances in Structural Engineering, 2020, 23, 2044-2056.	1.2	4
111	Pounding of a modular building unit during road transportation. Journal of Building Engineering, 2021, 36, 102120.	1.6	4
112	Fast Checking of Drift Demand in Multi-Storey Buildings with Asymmetry. Buildings, 2021, 11, 13.	1.4	4
113	Developing Earthquake-Resistant Structural Design Standard for Malaysia Based on Eurocode 8: Challenges and Recommendations. Standards, 2021, 1, 134-153.	0.6	4
114	Dynamic Performance of a Brick Veneer House with Steel Framing. Australian Journal of Structural Engineering, 2010, 11, 231-242.	0.4	3
115	Protocol for testing of cold-formed steel wall in regions of low-moderate seismicity. Earthquake and Structures, 2013, 4, 629-647.	1.0	3
116	A Simple Model for Estimating Shocks in Unrestrained Building Contents in an Earthquake. Journal of Earthquake Engineering, 2013, 17, 1126-1140.	1.4	3
117	Collapse Behaviour Assessment of Precast Soft Storey Building. Procedia Engineering, 2015, 125, 1036-1042.	1.2	3
118	Shear Wall and Frame Dual Systems Featuring Discontinuous Load Paths in Frame Elements in Low-to-Moderate Seismic Regions. Journal of Earthquake Engineering, 2022, 26, 7408-7443.	1.4	3
119	Seismic protection by rocking with superelastic tendon restraint. Earthquake Engineering and Structural Dynamics, 2022, 51, 1718-1737.	2.5	3
120	Title is missing!. Journal of Earthquake Engineering, 2006, 10, 775.	1.4	2
121	Curvature Ductility of Concrete Element under High Strain-Rates. Applied Mechanics and Materials, 0, 166-169, 2910-2917.	0.2	2
122	Local intraplate earthquake considerations for Singapore. IES Journal Part A: Civil and Structural Engineering, 2015, 8, 62-70.	0.4	2
123	Yield Penetration Displacement of Lightly Reinforced Concrete Columns. Applied Mechanics and Materials, 0, 845, 119-125.	0.2	2
124	Analytical modelling of podium interference on tower walls in buildings. Australian Journal of Structural Engineering, 2017, 18, 238-253.	0.4	2
125	Recent technical advancement in natural terrain landslide risk mitigation measures in Hong Kong. HKIE Transactions, 2018, 25, 90-101.	1.9	2
126	Soil-Embedded Steel Baffle with Concrete Footing Responding to Collision by a Fallen or Flying Object. International Journal of Geomechanics, 2022, 22, .	1.3	2

#	Article	IF	CITATIONS
127	Recent Developments in the Research and Practice of Earthquake Engineering in Australia. Australian Journal of Structural Engineering, 2008, 8, 13-27.	0.4	1
128	A New Approach to the Teaching of Structural Mechanics. Procedia Engineering, 2011, 14, 695-703.	1.2	1
129	Estimation of dynamic response of structural elements subject to blast and impact actions using a simple unified approach. IES Journal Part A: Civil and Structural Engineering, 2012, 5, 117-127.	0.4	1
130	Determination of contact force by compression testing of cylindrical specimens. MethodsX, 2019, 6, 1957-1966.	0.7	1
131	Corrections for effects of biaxial stresses in annealed glass. Structural Engineering and Mechanics, 2011, 39, 303-316.	1.0	1
132	Rapid Assessment for Collapse Vulnerability of Non-Ductile Structures in Areas of Low and Moderate Seismicity. , $2013, , .$		0
133	Discussion: Seismic performance of lightly reinforced structural walls for design purposes. Magazine of Concrete Research, 2014, 66, 1073-1074.	0.9	0
134	Seismic Response Modification Factors for Buildings Featuring a Gravity Transfer System by Incremental Dynamic Analyses. Journal of Earthquake Engineering, 0 , $1-25$.	1.4	0
135	Use of Spreadsheets for Analyses in Structural Engineering. , 2011, , 18-40.		0
136	Earthquake Engineering in Areas Away from Tectonic Plate Boundaries. Lecture Notes in Civil Engineering, 2021, , 367-380.	0.3	0
137	Shear behaviour of screw connections in plasterboard sheathed cold-formed steel-framed ceiling diaphragms: experimental and comparative study. Australian Journal of Civil Engineering, 0, , 1-19.	0.6	0
138	Editorial address. Australian Journal of Structural Engineering, 0, , 1-1.	0.4	0