Vikram Khipple Mulligan

List of Publications by Citations

Source: https://exaly.com/author-pdf/497066/vikram-khipple-mulligan-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

35
papers

2,431
citations

19
h-index

36
g-index

37373
ext. papers

2,431
19
h-index

4.84
L-index

#	Paper	IF	Citations
35	The Rosetta All-Atom Energy Function for Macromolecular Modeling and Design. <i>Journal of Chemical Theory and Computation</i> , 2017 , 13, 3031-3048	6.4	486
34	Global analysis of protein folding using massively parallel design, synthesis, and testing. <i>Science</i> , 2017 , 357, 168-175	33.3	241
33	Accurate de novo design of hyperstable constrained peptides. <i>Nature</i> , 2016 , 538, 329-335	50.4	231
32	Simultaneous Optimization of Biomolecular Energy Functions on Features from Small Molecules and Macromolecules. <i>Journal of Chemical Theory and Computation</i> , 2016 , 12, 6201-6212	6.4	199
31	Macromolecular modeling and design in Rosetta: recent methods and frameworks. <i>Nature Methods</i> , 2020 , 17, 665-680	21.6	165
30	De novo design of bioactive protein switches. <i>Nature</i> , 2019 , 572, 205-210	50.4	113
29	Prion disease susceptibility is affected by beta-structure folding propensity and local side-chain interactions in PrP. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 19808-13	11.5	102
28	Comprehensive computational design of ordered peptide macrocycles. <i>Science</i> , 2017 , 358, 1461-1466	33.3	96
27	Accurate computational design of multipass transmembrane proteins. <i>Science</i> , 2018 , 359, 1042-1046	33.3	93
26	Programmable design of orthogonal protein heterodimers. <i>Nature</i> , 2019 , 565, 106-111	50.4	87
25	Computational design of an unnatural amino acid dependent metalloprotein with atomic level accuracy. <i>Journal of the American Chemical Society</i> , 2013 , 135, 13393-9	16.4	84
24	Correction: Drosophila melanogaster Cad99C, the orthologue of human Usher cadherin PCDH15, regulates the length of microvilli. <i>Journal of Cell Biology</i> , 2005 , 171, 1085-1085	7.3	78
23	Protein misfolding in the late-onset neurodegenerative diseases: common themes and the unique case of amyotrophic lateral sclerosis. <i>Proteins: Structure, Function and Bioinformatics</i> , 2013 , 81, 1285-30)3 ^{4.2}	62
22	Drosophila melanogaster Cad99C, the orthologue of human Usher cadherin PCDH15, regulates the length of microvilli. <i>Journal of Cell Biology</i> , 2005 , 171, 549-58	7:3	59
21	CCM3/PDCD10 heterodimerizes with germinal center kinase III (GCKIII) proteins using a mechanism analogous to CCM3 homodimerization. <i>Journal of Biological Chemistry</i> , 2011 , 286, 25056-64	5.4	50
20	De novo design of covalently constrained mesosize protein scaffolds with unique tertiary structures. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 10852-10857	11.5	44
19	Denaturational stress induces formation of zinc-deficient monomers of Cu,Zn superoxide dismutase: implications for pathogenesis in amyotrophic lateral sclerosis. <i>Journal of Molecular Biology</i> , 2008 , 383, 424-36	6.5	40

(2021-2012)

18	Early steps in oxidation-induced SOD1 misfolding: implications for non-amyloid protein aggregation in familial ALS. <i>Journal of Molecular Biology</i> , 2012 , 421, 631-52	6.5	38	
17	ALS-causing SOD1 mutations promote production of copper-deficient misfolded species. <i>Journal of Molecular Biology</i> , 2011 , 409, 839-52	6.5	33	
16	Computationally designed peptide macrocycle inhibitors of New Delhi metallo-Elactamase 1. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	17	
15	The emerging role of computational design in peptide macrocycle drug discovery. <i>Expert Opinion on Drug Discovery</i> , 2020 , 15, 833-852	6.2	15	
14	Better together: Elements of successful scientific software development in a distributed collaborative community. <i>PLoS Computational Biology</i> , 2020 , 16, e1007507	5	15	
13	A systematic study of minima in alanine dipeptide. <i>Journal of Computational Chemistry</i> , 2019 , 40, 297-30) 9.5	15	
12	Designing Peptides on a Quantum Computer		13	
11	Anchor extension: a structure-guided approach to design cyclic peptides targeting enzyme active sites. <i>Nature Communications</i> , 2021 , 12, 3384	17.4	12	
10	Conversion of Abeta42 into a folded soluble native-like protein using a semi-random library of amphipathic helices. <i>Journal of Molecular Biology</i> , 2010 , 396, 1284-94	6.5	10	
9	Computational design of mixed chirality peptide macrocycles with internal symmetry. <i>Protein Science</i> , 2020 , 29, 2433-2445	6.3	9	
8	Analyzing complicated protein folding kinetics rapidly by analytical Laplace inversion using a Tikhonov regularization variant. <i>Analytical Biochemistry</i> , 2012 , 421, 181-90	3.1	7	
7	MHCEpitopeEnergy, a Flexible Rosetta-Based Biotherapeutic Deimmunization Platform. <i>Journal of Chemical Information and Modeling</i> , 2021 , 61, 2368-2382	6.1	6	
6	The Rosetta all-atom energy function for macromolecular modeling and design		3	
5	Current directions in combining simulation-based macromolecular modeling approaches with deep learning. <i>Expert Opinion on Drug Discovery</i> , 2021 , 16, 1025-1044	6.2	3	
4	Ensuring scientific reproducibility in bio-macromolecular modeling via extensive, automated benchmark	ks	2	
3	XENet: Using a new graph convolution to accelerate the timeline for protein design on quantum computers. <i>PLoS Computational Biology</i> , 2021 , 17, e1009037	5	2	
2	A computational method for the design of nested proteins by loop-directed domain insertion. <i>Proteins: Structure, Function and Bioinformatics</i> , 2018 , 86, 354-369	4.2	1	
1	Ensuring scientific reproducibility in bio-macromolecular modeling via extensive, automated benchmarks. <i>Nature Communications</i> , 2021 , 12, 6947	17.4	О	