Allon I Hochbaum

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4970468/allon-i-hochbaum-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

8,948 26 46 40 g-index h-index citations papers 9,811 6.13 46 15 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
40	Roadmap on emerging concepts in the physical biology of bacterial biofilms: from surface sensing to community formation. <i>Physical Biology</i> , 2021 , 18,	3	16
39	Structural Determination of a Filamentous Chaperone to Fabricate Electronically Conductive Metalloprotein Nanowires. <i>ACS Nano</i> , 2020 , 14, 6559-6569	16.7	13
38	Deep Learning Analysis of Vibrational Spectra of Bacterial Lysate for Rapid Antimicrobial Susceptibility Testing. <i>ACS Nano</i> , 2020 , 14, 15336-15348	16.7	28
37	Structure of Microbial Nanowires Reveals Stacked Hemes that Transport Electrons over Micrometers. <i>Cell</i> , 2019 , 177, 361-369.e10	56.2	223
36	Surface-Enhanced Raman Scattering-Based Odor Compass: Locating Multiple Chemical Sources and Pathogens. <i>ACS Sensors</i> , 2019 , 4, 2311-2319	9.2	17
35	Electrical Conductivity, Selective Adhesion, and Biocompatibility in Bacteria-Inspired Peptide-Metal Self-Supporting Nanocomposites. <i>Advanced Materials</i> , 2019 , 31, e1807285	24	17
34	Amino-acid-encoded biocatalytic self-assembly enables the formation of transient conducting nanostructures. <i>Nature Chemistry</i> , 2018 , 10, 696-703	17.6	133
33	Longitudinal Monitoring of Biofilm Formation via Robust Surface-Enhanced Raman Scattering Quantification of Pseudomonas aeruginosa-Produced Metabolites. <i>ACS Applied Materials & Interfaces</i> , 2018 , 10, 12364-12373	9.5	36
32	Electronic Conductivity in Biomimetic EHelical Peptide Nanofibers and Gels. ACS Nano, 2018, 12, 2652-2	2 66 1.7	44
31	Going the Distance: Long-Range Conductivity in Protein and Peptide Bioelectronic Materials. Journal of Physical Chemistry B, 2018 , 122, 10403-10423	3.4	70
30	Conformations of peptoids in nanosheets result from the interplay of backbone energetics and intermolecular interactions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 5647-5651	11.5	30
29	Effects of Growth Surface Topography on Bacterial Signaling in Coculture Biofilms. <i>ACS Applied Materials & District Amplied & District Ampl</i>	9.5	24
28	Driving Chemical Reactions in Plasmonic Nanogaps with Electrohydrodynamic Flow. <i>ACS Nano</i> , 2017 , 11, 11317-11329	16.7	18
27	The Phe-Ile Zipper: A Specific Interaction Motif Drives Antiparallel Coiled-Coil Hexamer Formation. <i>Biochemistry</i> , 2017 , 56, 5300-5308	3.2	8
26	Geobacter sulfurreducens pili support ohmic electronic conduction in aqueous solution. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 21791-21799	3.6	43
25	Metabolic fingerprinting of bacteria by fluorescence lifetime imaging microscopy. <i>Scientific Reports</i> , 2017 , 7, 3743	4.9	25
24	Robust SERS spectral analysis for quantitative detection of pyocyanin in biological fluids 2017 ,		2

(2006-2016)

23	Rhamnolipids Mediate an Interspecies Biofilm Dispersal Signaling Pathway. <i>ACS Chemical Biology</i> , 2016 , 11, 3068-3076	4.9	23
22	X-ray Crystallographic Structure and Solution Behavior of an Antiparallel Coiled-Coil Hexamer Formed by de Novo Peptides. <i>Biochemistry</i> , 2016 , 55, 3214-23	3.2	12
21	Surface enhanced Raman scattering for detection of Pseudomonas aeruginosaquorum sensing compounds 2015 ,		2
20	Modeling of Polarization Losses of a Microbial Fuel Cell 2014 ,		4
19	Control of bacterial biofilm growth on surfaces by nanostructural mechanics and geometry. <i>Nanotechnology</i> , 2011 , 22, 494007	3.4	113
18	Inhibitory effects of D-amino acids on Staphylococcus aureus biofilm development. <i>Journal of Bacteriology</i> , 2011 , 193, 5616-22	3.5	192
17	Semiconductor nanowires for energy conversion. <i>Chemical Reviews</i> , 2010 , 110, 527-46	68.1	1220
16	Bacteria pattern spontaneously on periodic nanostructure arrays. <i>Nano Letters</i> , 2010 , 10, 3717-21	11.5	232
15	Enhanced thermoelectric performance of rough silicon nanowires 2010 , 111-115		
14	Thermoelectric properties of p-type PbSe nanowires. <i>Nano Research</i> , 2009 , 2, 394-399	10	67
13	Field-effect modulation of Seebeck coefficient in single PbSe nanowires. <i>Nano Letters</i> , 2009 , 9, 1689-93	11.5	97
12	Single crystalline mesoporous silicon nanowires. <i>Nano Letters</i> , 2009 , 9, 3550-4	11.5	294
12	Single crystalline mesoporous silicon nanowires. <i>Nano Letters</i> , 2009 , 9, 3550-4 Enhanced thermoelectric performance of rough silicon nanowires. <i>Nature</i> , 2008 , 451, 163-7	11.5 50.4	
11	Enhanced thermoelectric performance of rough silicon nanowires. <i>Nature</i> , 2008 , 451, 163-7	50.4	3293
11	Enhanced thermoelectric performance of rough silicon nanowires. <i>Nature</i> , 2008 , 451, 163-7 Thermal conductance of thin silicon nanowires. <i>Physical Review Letters</i> , 2008 , 101, 105501 Synthesis and Thermoelectrical Characterization of Lead Chalcogenide Nanowires. <i>Advanced</i>	5°.4 7.4	3293 289
11 10 9	Enhanced thermoelectric performance of rough silicon nanowires. <i>Nature</i> , 2008 , 451, 163-7 Thermal conductance of thin silicon nanowires. <i>Physical Review Letters</i> , 2008 , 101, 105501 Synthesis and Thermoelectrical Characterization of Lead Chalcogenide Nanowires. <i>Advanced Materials</i> , 2007 , 19, 3047-3051	50.4 7.4 24	3293 289 149

5	Synthesis of bifunctional polymer nanotubes from silicon nanowire templates via atom transfer radical polymerization. <i>Journal of the American Chemical Society</i> , 2005 , 127, 16040-1	16.4	63
4	Controlled growth of Si nanowire arrays for device integration. <i>Nano Letters</i> , 2005 , 5, 457-60	11.5	581
3	Size Fractionation of Metal Nanoparticles by Membrane Filtration. Advanced Materials, 2005, 17, 532-5	35 4	133
2	Si Nanowire Bridges in Microtrenches: Integration of Growth into Device Fabrication. <i>Advanced Materials</i> , 2005 , 17, 2098-2102	24	129
1	Rational design of cytophilic and cytophobic polyelectrolyte multilayer thin films. <i>Biomacromolecules</i> , 2003 , 4, 96-106	6.9	411