Allon I Hochbaum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4970468/publications.pdf Version: 2024-02-01

ALLON L HOCHBALLM

#	Article	IF	CITATIONS
1	Electrically Fueled Active Supramolecular Materials. Journal of the American Chemical Society, 2022, 144, 7844-7851.	13.7	30
2	Electronic Structure of de Novo Peptide ACC-Hex from First Principles. Journal of Physical Chemistry B, 2022, 126, 4289-4298.	2.6	2
3	Cryo-EM structure of an extracellular Geobacter OmcE cytochrome filament reveals tetrahaem packing. Nature Microbiology, 2022, 7, 1291-1300.	13.3	47
4	Roadmap on emerging concepts in the physical biology of bacterial biofilms: from surface sensing to community formation. Physical Biology, 2021, 18, 051501.	1.8	46
5	Deep Learning Analysis of Vibrational Spectra of Bacterial Lysate for Rapid Antimicrobial Susceptibility Testing. ACS Nano, 2020, 14, 15336-15348.	14.6	75
6	Structural Determination of a Filamentous Chaperone to Fabricate Electronically Conductive Metalloprotein Nanowires. ACS Nano, 2020, 14, 6559-6569.	14.6	20
7	Surface-Enhanced Raman Scattering-Based Odor Compass: Locating Multiple Chemical Sources and Pathogens. ACS Sensors, 2019, 4, 2311-2319.	7.8	32
8	Structure of Microbial Nanowires Reveals Stacked Hemes that Transport Electrons over Micrometers. Cell, 2019, 177, 361-369.e10.	28.9	391
9	Electrical Conductivity, Selective Adhesion, and Biocompatibility in Bacteriaâ€Inspired Peptide–Metal Selfâ€Supporting Nanocomposites. Advanced Materials, 2019, 31, e1807285.	21.0	25
10	Amino-acid-encoded biocatalytic self-assembly enables the formation of transient conducting nanostructures. Nature Chemistry, 2018, 10, 696-703.	13.6	189
11	Longitudinal Monitoring of Biofilm Formation via Robust Surface-Enhanced Raman Scattering Quantification of <i>Pseudomonas aeruginosa</i> -Produced Metabolites. ACS Applied Materials & Interfaces, 2018, 10, 12364-12373.	8.0	51
12	Electronic Conductivity in Biomimetic α-Helical Peptide Nanofibers and Gels. ACS Nano, 2018, 12, 2652-2661.	14.6	69
13	Going the Distance: Long-Range Conductivity in Protein and Peptide Bioelectronic Materials. Journal of Physical Chemistry B, 2018, 122, 10403-10423.	2.6	116
14	Conformations of peptoids in nanosheets result from the interplay of backbone energetics and intermolecular interactions. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5647-5651.	7.1	43
15	Effects of Growth Surface Topography on Bacterial Signaling in Coculture Biofilms. ACS Applied Materials & Interfaces, 2017, 9, 18531-18539.	8.0	32
16	Driving Chemical Reactions in Plasmonic Nanogaps with Electrohydrodynamic Flow. ACS Nano, 2017, 11, 11317-11329.	14.6	25
17	The Phe-Ile Zipper: A Specific Interaction Motif Drives Antiparallel Coiled-Coil Hexamer Formation. Biochemistry, 2017, 56, 5300-5308.	2.5	13
18	<i>Geobacter sulfurreducens</i> pili support ohmic electronic conduction in aqueous solution. Physical Chemistry Chemical Physics, 2017, 19, 21791-21799.	2.8	56

Allon I Hochbaum

#	Article	IF	CITATIONS
19	Metabolic fingerprinting of bacteria by fluorescence lifetime imaging microscopy. Scientific Reports, 2017, 7, 3743.	3.3	42
20	Self-assembled plasmonic nanogaps: Enabling early detection of biofilm formation. , 2017, , .		0
21	Robust SERS spectral analysis for quantitative detection of pyocyanin in biological fluids. , 2017, , .		2
22	X-ray Crystallographic Structure and Solution Behavior of an Antiparallel Coiled-Coil Hexamer Formed by <i>de Novo</i> Peptides. Biochemistry, 2016, 55, 3214-3223.	2.5	17
23	Rhamnolipids Mediate an Interspecies Biofilm Dispersal Signaling Pathway. ACS Chemical Biology, 2016, 11, 3068-3076.	3.4	36
24	Surface enhanced Raman scattering for detection ofPseudomonas aeruginosaquorum sensing compounds. , 2015, , .		3
25	Modeling of Polarization Losses of a Microbial Fuel Cell. , 2014, , .		5
26	Control of bacterial biofilm growth on surfaces by nanostructural mechanics and geometry. Nanotechnology, 2011, 22, 494007.	2.6	133
27	Inhibitory Effects of <scp>d</scp> -Amino Acids on Staphylococcus aureus Biofilm Development. Journal of Bacteriology, 2011, 193, 5616-5622.	2.2	246
28	Semiconductor Nanowires for Energy Conversion. Chemical Reviews, 2010, 110, 527-546.	47.7	1,317
29	Bacteria Pattern Spontaneously on Periodic Nanostructure Arrays. Nano Letters, 2010, 10, 3717-3721.	9.1	265
30	Enhanced thermoelectric performance of rough silicon nanowires. , 2010, , 111-115.		2
31	Thermoelectric properties of p-type PbSe nanowires. Nano Research, 2009, 2, 394-399.	10.4	76
32	Field-Effect Modulation of Seebeck Coefficient in Single PbSe Nanowires. Nano Letters, 2009, 9, 1689-1693.	9.1	110
33	Single Crystalline Mesoporous Silicon Nanowires. Nano Letters, 2009, 9, 3550-3554.	9.1	310
34	Enhanced thermoelectric performance of rough silicon nanowires. Nature, 2008, 451, 163-167.	27.8	3,721
35	Thermal Conductance of Thin Silicon Nanowires. Physical Review Letters, 2008, 101, 105501.	7.8	316
36	Synthesis and Thermoelectrical Characterization of Lead Chalcogenide Nanowires. Advanced Materials, 2007, 19, 3047-3051.	21.0	156

Allon I Hochbaum

#	Article	IF	CITATIONS
37	Silicon Vertically Integrated Nanowire Field Effect Transistors. Nano Letters, 2006, 6, 973-977.	9.1	730
38	Electrical Characteristics and Chemical Stability of Non-Oxidized, Methyl-Terminated Silicon Nanowires. Journal of the American Chemical Society, 2006, 128, 8990-8991.	13.7	142
39	Synthesis of High Density, Size-Controlled Si Nanowire Arrays via Porous Anodic Alumina Mask. Chemistry of Materials, 2006, 18, 988-991.	6.7	100
40	Size Fractionation of Metal Nanoparticles by Membrane Filtration. Advanced Materials, 2005, 17, 532-535.	21.0	145
41	Si Nanowire Bridges in Microtrenches: Integration of Growth into Device Fabrication. Advanced Materials, 2005, 17, 2098-2102.	21.0	140
42	Synthesis of Bifunctional Polymer Nanotubes from Silicon Nanowire Templates via Atom Transfer Radical Polymerization. Journal of the American Chemical Society, 2005, 127, 16040-16041.	13.7	66
43	Controlled Growth of Si Nanowire Arrays for Device Integration. Nano Letters, 2005, 5, 457-460.	9.1	644
44	Rational Design of Cytophilic and Cytophobic Polyelectrolyte Multilayer Thin Films. Biomacromolecules, 2003, 4, 96-106.	5.4	432