Zongkui Kou

List of Publications by Citations

Source: https://exaly.com/author-pdf/4970199/zongkui-kou-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

114 6,027 45 75 g-index

119 7,920 13.2 6.42 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
114	RuP -Based Catalysts with Platinum-like Activity and Higher Durability for the Hydrogen Evolution Reaction at All pH Values. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 11559-11564	16.4	429
113	2D Dual-Metal Zeolitic-Imidazolate-Framework-(ZIF)-Derived Bifunctional Air Electrodes with Ultrahigh Electrochemical Properties for Rechargeable ZincAir Batteries. <i>Advanced Functional Materials</i> , 2018 , 28, 1705048	15.6	269
112	N-P-O co-doped high performance 3D graphene prepared through red phosphorous-assisted Butting-thin[lechnique: A universal synthesis and multifunctional applications. <i>Nano Energy</i> , 2016 , 28, 346-355	17.1	181
111	Copper Single Atoms Anchored in Porous Nitrogen-Doped Carbon as Efficient pH-Universal Catalysts for the Nitrogen Reduction Reaction. <i>ACS Catalysis</i> , 2019 , 9, 10166-10173	13.1	168
110	Phytic acid-derivative transition metal phosphides encapsulated in N,P-codoped carbon: an efficient and durable hydrogen evolution electrocatalyst in a wide pH range. <i>Nanoscale</i> , 2017 , 9, 3555-3	5 7 67	158
109	Iron-Doped Nickel Phosphide Nanosheet Arrays: An Efficient Bifunctional Electrocatalyst for Water Splitting. <i>ACS Applied Materials & Distriction (Materials & Distriction)</i> 9, 26001-26007	9.5	158
108	Significant Role of Al in Ternary Layered Double Hydroxides for Enhancing Electrochemical Performance of Flexible Asymmetric Supercapacitor. <i>Advanced Functional Materials</i> , 2019 , 29, 1903879	15.6	144
107	Rational Design of Holey 2D Nonlayered Transition Metal Carbide/Nitride Heterostructure Nanosheets for Highly Efficient Water Oxidation. <i>Advanced Energy Materials</i> , 2019 , 9, 1803768	21.8	143
106	All-Solid-State Fiber Supercapacitors with Ultrahigh Volumetric Energy Density and Outstanding Flexibility. <i>Advanced Energy Materials</i> , 2019 , 9, 1802753	21.8	140
105	3D-Printed MOF-Derived Hierarchically Porous Frameworks for Practical High-Energy Density Li D 2 Batteries. <i>Advanced Functional Materials</i> , 2019 , 29, 1806658	15.6	138
104	General Strategy for the Synthesis of Transition-Metal Phosphide/N-Doped Carbon Frameworks for Hydrogen and Oxygen Evolution. <i>ACS Applied Materials & District Materials & Distr</i>	9.5	135
103	Self-Organized 3D Porous Graphene Dual-Doped with Biomass-Sponsored Nitrogen and Sulfur for Oxygen Reduction and Evolution. <i>ACS Applied Materials & District Amplied Materials & District Amp</i>	9.5	127
102	Engineered Graphene Materials: Synthesis and Applications for Polymer Electrolyte Membrane Fuel Cells. <i>Advanced Materials</i> , 2017 , 29, 1601741	24	118
101	Hierarchical Micro-Nano Sheet Arrays of Nickel-Cobalt Double Hydroxides for High-Rate Ni-Zn Batteries. <i>Advanced Science</i> , 2019 , 6, 1802002	13.6	118
100	Defect and pyridinic nitrogen engineering of carbon-based metal-free nanomaterial toward oxygen reduction. <i>Nano Energy</i> , 2018 , 52, 307-314	17.1	114
99	MoC quantum dot embedded chitosan-derived nitrogen-doped carbon for efficient hydrogen evolution in a broad pH range. <i>Chemical Communications</i> , 2016 , 52, 12753-12756	5.8	112
98	Stitching of Zn(OH)VOI2HO 2D Nanosheets by 1D Carbon Nanotubes Boosts Ultrahigh Rate for Wearable Quasi-Solid-State Zinc-Ion Batteries. <i>ACS Nano</i> , 2020 , 14, 842-853	16.7	104

(2017-2019)

97	heterojunction engineering of MoSe2/MoS2 with electronic modulation towards synergetic hydrogen evolution reaction and supercapacitance performance. <i>Chemical Engineering Journal</i> , 2019 , 359, 1419-1426	14.7	104
96	Smart reconstruction of dual-carbon decorated MnO for anode with high-capacity and ultralong-life lithium storage properties. <i>Carbon</i> , 2017 , 115, 95-104	10.4	102
95	In Situ Exfoliating and Generating Active Sites on Graphene Nanosheets Strongly Coupled with Carbon Fiber toward Self-Standing Bifunctional Cathode for Rechargeable ZnAir Batteries. <i>Advanced Energy Materials</i> , 2018 , 8, 1703539	21.8	99
94	Simultaneous sulfonation and reduction of graphene oxide as highly efficient supports for metal nanocatalysts. <i>Carbon</i> , 2014 , 66, 312-319	10.4	98
93	Synergizing Mo Single Atoms and Mo C Nanoparticles on CNTs Synchronizes Selectivity and Activity of Electrocatalytic N Reduction to Ammonia. <i>Advanced Materials</i> , 2020 , 32, e2002177	24	93
92	2D carbide nanomeshes and their assembling into 3D microflowers for efficient water splitting. <i>Applied Catalysis B: Environmental</i> , 2019 , 243, 678-685	21.8	92
91	Potential-Dependent Phase Transition and Mo-Enriched Surface Reconstruction of ECoOOH in a Heterostructured Co-Mo2C Precatalyst Enable Water Oxidation. <i>ACS Catalysis</i> , 2020 , 10, 4411-4419	13.1	88
90	Top-Down Strategy to Synthesize Mesoporous Dual Carbon Armored MnO Nanoparticles for Lithium-Ion Battery Anodes. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 12680-12686	9.5	83
89	CuCoS Nanosheets@N-Doped Carbon Nanofibers by Sulfurization at Room Temperature as Bifunctional Electrocatalysts in Flexible Quasi-Solid-State Zn-Air Batteries. <i>Advanced Science</i> , 2019 , 6, 1900628	13.6	81
88	In situ coupled amorphous cobalt nitride with nitrogen-doped graphene aerogel as a trifunctional electrocatalyst towards Zn-air battery deriven full water splitting. <i>Applied Catalysis B: Environmental</i> , 2019 , 259, 118100	21.8	76
87	The role of iron nitrides in the Fe-N-C catalysis system towards the oxygen reduction reaction. <i>Nanoscale</i> , 2017 , 9, 7641-7649	7.7	73
86	Zn Pre-Intercalation Stabilizes the Tunnel Structure of MnO Nanowires and Enables Zinc-Ion Hybrid Supercapacitor of Battery-Level Energy Density. <i>Small</i> , 2020 , 16, e2000091	11	69
85	Ultrafine Molybdenum Carbide Nanocrystals Confined in Carbon Foams via a Colloid-Confinement Route for Efficient Hydrogen Production. <i>Small Methods</i> , 2018 , 2, 1700396	12.8	69
84	All-in-one stretchable coaxial-fiber strain sensor integrated with high-performing supercapacitor. <i>Energy Storage Materials</i> , 2020 , 25, 124-130	19.4	67
83	Cage-confinement pyrolysis route to size-controlled molybdenum-based oxygen electrode catalysts: From isolated atoms to clusters and nanoparticles. <i>Nano Energy</i> , 2020 , 67, 104288	17.1	65
82	Efficient Hydrogen Evolution of Oxidized Ni-N Defective Sites for Alkaline Freshwater and Seawater Electrolysis. <i>Advanced Materials</i> , 2021 , 33, e2003846	24	65
81	Heterogeneous Single Atom Electrocatalysis, Where Bingles Are Married Advanced Energy Materials, 2020 , 10, 1903181	21.8	64
80	Molybdenum Carbide-Derived Chlorine-Doped Ordered Mesoporous Carbon with Few-Layered Graphene Walls for Energy Storage Applications. <i>ACS Applied Materials & Description</i> (2017), 9, 3702-3	9 [.] ∮2	63

79	Z-scheme carbon-bridged Bi2O3/TiO2 nanotube arrays to boost photoelectrochemical detection performance. <i>Applied Catalysis B: Environmental</i> , 2019 , 248, 255-263	21.8	62
78	Coupled cobalt silicate nanobelt-on-nanobelt hierarchy structure with reduced graphene oxide for enhanced supercapacitive performance. <i>Journal of Power Sources</i> , 2020 , 448, 227407	8.9	62
77	Fundamentals, advances and challenges of transition metal compounds-based supercapacitors. <i>Chemical Engineering Journal</i> , 2021 , 412, 128611	14.7	62
76	Surface nitridation of nickel-cobalt alloy nanocactoids raises the performance of water oxidation and splitting. <i>Applied Catalysis B: Environmental</i> , 2020 , 270, 118889	21.8	60
75	Porous NiCo2S4/FeOOH nanowire arrays with rich sulfide/hydroxide interfaces enable high OER activity. <i>Nano Energy</i> , 2020 , 78, 105230	17.1	60
74	A Generic Conversion Strategy: From 2D Metal Carbides (MxCy) to M-Self-Doped Graphene toward High-Efficiency Energy Applications. <i>Advanced Functional Materials</i> , 2017 , 27, 1604904	15.6	59
73	Transforming Two-Dimensional Boron Carbide into Boron and Chlorine Dual-Doped Carbon Nanotubes by Chlorination for Efficient Oxygen Reduction. <i>ACS Energy Letters</i> , 2018 , 3, 184-190	20.1	57
72	Synergizing in-grown Ni3N/Ni heterostructured core and ultrathin Ni3N surface shell enables self-adaptive surface reconfiguration and efficient oxygen evolution reaction. <i>Nano Energy</i> , 2020 , 78, 105355	17.1	56
71	Ultrathin carbon layer stabilized metal catalysts towards oxygen reduction. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 14007-14014	13	48
70	Constructing carbon-cohered high-index (222) faceted tantalum carbide nanocrystals as a robust hydrogen evolution catalyst. <i>Nano Energy</i> , 2017 , 36, 374-380	17.1	47
69	Twinned Tungsten Carbonitride Nanocrystals Boost Hydrogen Evolution Activity and Stability. <i>Small</i> , 2019 , 15, e1900248	11	44
68	Na-Mn-O Nanocrystals as a High Capacity and Long Life Anode Material for Li-Ion Batteries. <i>Advanced Energy Materials</i> , 2017 , 7, 1602092	21.8	42
67	MOF-Derived Vertically Aligned Mesoporous Co3O4 Nanowires for Ultrahigh Capacity Lithium-Ion Batteries Anodes. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1800222	4.6	42
66	Key issues facing electrospun carbon nanofibers in energy applications: on-going approaches and challenges. <i>Nanoscale</i> , 2020 , 12, 13225-13248	7.7	38
65	Electronic Structure Control of Tungsten Oxide Activated by Ni for Ultrahigh-Performance Supercapacitors. <i>Small</i> , 2018 , 14, e1800381	11	38
64	A sacrificial Zn strategy enables anchoring of metal single atoms on the exposed surface of holey 2D molybdenum carbide nanosheets for efficient electrocatalysis. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 3071-3082	13	38
63	Flexible supercapacitor of high areal performance with vanadium/cobalt oxides on carbon nanofibers as a binder-free membrane electrode. <i>Chemical Engineering Journal</i> , 2020 , 402, 126294	14.7	38
62	Flexible and Wearable All-Solid-State Al-Air Battery Based on Iron Carbide Encapsulated in Electrospun Porous Carbon Nanofibers. <i>ACS Applied Materials & Description of the Electrospun Porous Carbon Nanofibers</i> . <i>ACS Applied Materials & Description of the Electrospun Porous Carbon Nanofibers</i> .	9.5	38

(2020-2020)

61	Fabrication and theoretical investigation of cobaltosic sulfide nanosheets for flexible aqueous Zn/Co batteries. <i>Nano Energy</i> , 2020 , 68, 104314	17.1	34
60	Boosting Zn-Ion Storage Performance of Bronze-Type VO Ni-Mediated Electronic Structure Engineering. <i>ACS Applied Materials & Acs Applied & A</i>	9.5	34
59	All-solid-state sponge-like squeezable zinc-air battery. <i>Energy Storage Materials</i> , 2019 , 23, 375-382	19.4	32
58	Observable Electrochemical Oxidation of Carbon Promoted by Platinum Nanoparticles. <i>ACS Applied Materials & District Materials & Distri</i>	9.5	29
57	Open hollow Co P t clusters embedded in carbon nanoflake arrays for highly efficient alkaline water splitting. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 20214-20223	13	29
56	Cobalt-doping in hierarchical Ni3S2 nanorod arrays enables high areal capacitance. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 13114-13120	13	28
55	Dynamic Surface Chemistry of Catalysts in Oxygen Evolution Reaction. <i>Small Science</i> , 2021 , 1, 2100011		28
54	Lithiophilic polymer interphase anchored on laser-punched 3D holey Cu matrix enables uniform lithium nucleation leading to super-stable lithium metal anodes. <i>Energy Storage Materials</i> , 2020 , 29, 84-	9 ⁴ 9·4	28
53	Surface-engineered cobalt oxide nanowires as multifunctional electrocatalysts for efficient Zn-Air batteries-driven overall water splitting. <i>Energy Storage Materials</i> , 2019 , 23, 1-7	19.4	26
52	Nanoframes of Co3O4Mo2N Heterointerfaces Enable High-Performance Bifunctionality toward Both Electrocatalytic HER and OER. <i>Advanced Functional Materials</i> ,2107382	15.6	26
51	Hollow structure engineering of FeCo alloy nanoparticles electrospun in nitrogen-doped carbon enables high performance flexible all-solid-state zinc ir batteries. Sustainable Energy and Fuels, 2020, 4, 1747-1753	5.8	26
50	Nanohollow Carbon for Rechargeable Batteries: Ongoing Progresses and Challenges. <i>Nano-Micro Letters</i> , 2020 , 12, 183	19.5	26
49	PHe bond oxygen reduction catalysts toward high-efficiency metalHir batteries and fuel cells. Journal of Materials Chemistry A, 2020 , 8, 9121-9127	13	26
48	Synergizing aliovalent doping and interface in heterostructured NiV nitride@oxyhydroxide core-shell nanosheet arrays enables efficient oxygen evolution. <i>Nano Energy</i> , 2021 , 85, 105961	17.1	26
47	Assembling of Bi atoms on TiO nanorods boosts photoelectrochemical water splitting of semiconductors. <i>Nanoscale</i> , 2020 , 12, 4302-4308	7.7	24
46	1.3 V superwide potential window sponsored by Na-Mn-O plates as cathodes towards aqueous rechargeable sodium-ion batteries. <i>Chemical Engineering Journal</i> , 2019 , 370, 742-748	14.7	23
45	Intrinsically microporous polymer slows down fuel cell catalyst corrosion. <i>Electrochemistry Communications</i> , 2015 , 59, 72-76	5.1	23
44	Single atom catalysts: a surface heterocompound perspective. <i>Nanoscale Horizons</i> , 2020 , 5, 757-764	10.8	23

43	Realizing the extraction of carbon from WC for in situ formation of W/WC heterostructures with efficient photoelectrochemical hydrogen evolution. <i>Nanoscale Horizons</i> , 2019 , 4, 196-201	10.8	21
42	Bronze-type vanadium dioxide holey nanobelts as high performing cathode material for aqueous aluminium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 12716-12722	13	21
41	Rational design of electrospun nanofiber-typed electrocatalysts for water splitting: A review. <i>Chemical Engineering Journal</i> , 2022 , 428, 131133	14.7	20
40	Ammonia-etching-assisted nanotailoring of manganese silicate boosts faradaic capacity for high-performance hybrid supercapacitors. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 2220-2228	5.8	18
39	NaMnD@C yolkBhell nanorods as an ultrahigh electrochemical performance anode for lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 18509-18517	13	18
38	TePtFe Nanotubes as High-Performing Bifunctional Electrocatalysts for the Oxygen Reduction Reaction and Hydrogen Evolution Reaction. <i>ChemSusChem</i> , 2018 , 11, 1328-1333	8.3	17
37	In-situ surface self-reconstruction in ternary transition metal dichalcogenide nanorod arrays enables efficient electrocatalytic oxygen evolution. <i>Journal of Energy Chemistry</i> , 2021 , 55, 10-16	12	17
36	Black Phosphorus@TiCT MXene Composites with Engineered Chemical Bonds for Commercial-Level Capacitive Energy Storage. <i>ACS Nano</i> , 2021 ,	16.7	17
35	Manipulating Interfaces of Electrocatalysts Down to Atomic Scales: Fundamentals, Strategies, and Electrocatalytic Applications <i>Small Methods</i> , 2021 , 5, e2001010	12.8	16
34	Single-Atom Catalysts: Advances and Challenges in Metal-Support Interactions for Enhanced Electrocatalysis. <i>Electrochemical Energy Reviews</i> ,1	29.3	15
33	Electrospun One-Dimensional Electrocatalysts for Oxygen Reduction Reaction: Insights into Structure-Activity Relationship. <i>ACS Applied Materials & Empty Interfaces</i> , 2021 , 13, 37961-37978	9.5	15
32	Graphene from amorphous titanium carbide by chlorination under 200 LC and atmospheric pressures. <i>Scientific Reports</i> , 2014 , 4, 5494	4.9	14
31	Boosted electrochemical ammonia synthesis by high-percentage metallic transition metal dichalcogenide quantum dots. <i>Nanoscale</i> , 2020 , 12, 10964-10971	7.7	14
30	Three-Dimensionally Costabilized Metal Catalysts toward an Oxygen Reduction Reaction. <i>Langmuir</i> , 2016 , 32, 2236-44	4	14
29	In situ-grown compressed NiCo2S4 barrier layer for efficient and durable polysulfide entrapment. <i>NPG Asia Materials</i> , 2019 , 11,	10.3	14
28	Direct Observation of Stable Negative Capacitance in SrTiO3@BaTiO3 Heterostructure. <i>Advanced Electronic Materials</i> , 2020 , 6, 1901005	6.4	14
27	Distorted niobium-self-doped graphene in-situ grown from 2D niobium carbide for catalyzing oxygen reduction. <i>Carbon</i> , 2018 , 139, 1144-1151	10.4	12
26	Nurturing the marriages of single atoms with atomic clusters and nanoparticles for better heterogeneous electrocatalysis 2022 , 1, 51-87		12

25	Fiber-in-tube and particle-in-tube hierarchical nanostructures enable high energy density of MnO-based asymmetric supercapacitors. <i>Journal of Colloid and Interface Science</i> , 2021 , 582, 543-551	9.3	12
24	In situ constructing of ultrastable ceramic@graphene core-shell architectures as advanced metal catalyst supports toward oxygen reduction. <i>Journal of Energy Chemistry</i> , 2017 , 26, 1160-1167	12	11
23	NiFe Layered Double-Hydroxide Nanosheets on a Cactuslike (Ni,Co)Se2 Support for Water Oxidation. <i>ACS Applied Nano Materials</i> , 2019 , 2, 325-333	5.6	11
22	Phospho-oxynitride Layer Protected Cobalt Phosphonitride Nanowire Arrays for High-Rate and Stable Supercapacitors. <i>ACS Applied Energy Materials</i> , 2019 , 2, 616-626	6.1	10
21	Quasi-Paired Pt Atomic Sites on Mo C Promoting Selective Four-Electron Oxygen Reduction. <i>Advanced Science</i> , 2021 , 8, e2101344	13.6	10
20	Core-shell graphene@amorphous carbon composites supported platinum catalysts for oxygen reduction reaction. <i>Chinese Journal of Catalysis</i> , 2015 , 36, 490-495	11.3	8
19	Swapping Catalytic Active Sites from Cationic Ni to Anionic S in Nickel Sulfide Enables More Efficient Alkaline Hydrogen Generation. <i>Advanced Energy Materials</i> ,2103359	21.8	8
18	Electrocatalytically inactive copper improves the water adsorption/dissociation on NiS for accelerated alkaline and neutral hydrogen evolution. <i>Nanoscale</i> , 2021 , 13, 2456-2464	7.7	8
17	Tunable Ru-Ru 2 P heterostructures with charge redistribution for efficient pH-universal hydrogen evolution. <i>Informal</i> i@Materilly,	23.1	7
16	Combinational Design of Electronic Structure and Nanoarray Architecture Achieves a Low-Overpotential Oxygen Electrode for Aprotic Lithium Dxygen Batteries. <i>Small Methods</i> , 2020 , 4, 1900619	12.8	7
15	A surface precleaning strategy intensifies the interface coupling of the Bi2O3/TiO2 heterostructure for enhanced photoelectrochemical detection properties. <i>Materials Chemistry Frontiers</i> , 2020 , 4, 638-644	7.8	6
14	Single Atom Electrocatalysis: Heterogeneous Single Atom Electrocatalysis, Where Bingles Are Married (Adv. Energy Mater. 9/2020). <i>Advanced Energy Materials</i> , 2020 , 10, 2070037	21.8	5
13	Vertically mounting molybdenum disulfide nanosheets on dimolybdenum carbide nanomeshes enables efficient hydrogen evolution. <i>Nano Research</i> ,1	10	5
12	In situ electrochemical oxidation of electrodeposited Ni-based nanostructure promotes alkaline hydrogen production. <i>Nanotechnology</i> , 2019 , 30, 474001	3.4	4
11	Encapsulating Oxygen-Deficient TiNb24O62 Microspheres by N-Doped Carbon Nanolayer Boosts Capacity and Stability of Lithium-Ion Battery. <i>Batteries and Supercaps</i> , 2020 , 3, 1360-1369	5.6	4
10	Enhancing the Specific Activity of Metal Catalysts Toward Oxygen Reduction by Introducing Proton Conductor. <i>Nano</i> , 2016 , 11, 1650055	1.1	4
9	Controlling atomic phosphorous-mounting surfaces of ultrafine W2C nanoislands monodispersed on the carbon frameworks for enhanced hydrogen evolution. <i>Chinese Journal of Catalysis</i> , 2021 , 42, 17	98-180	7 4
8	Fundamentals, On-Going Advances and Challenges of Electrochemical Carbon Dioxide Reduction. <i>Electrochemical Energy Reviews</i> ,1	29.3	3

7	Boosting Faradic efficiency of dinitrogen reduction on the negatively charged Mo sites modulated via interstitial Fe doping into a Mo2C nanowall catalyst. <i>Chemical Engineering Journal</i> , 2021 , 417, 12792	4 ^{14.7}	3
6	A chainmail effect of ultrathin N-doped carbon shell on NiP nanorod arrays for efficient hydrogen evolution reaction catalysis. <i>Journal of Colloid and Interface Science</i> , 2022 , 607, 281-289	9.3	3
5	Edge stimulated hydrogen evolution reaction on monodispersed MXene quantum dots. <i>Chemical Engineering Journal</i> , 2022 , 442, 136119	14.7	3
4	Quench-Induced Surface Engineering Boosts Alkaline Freshwater and Seawater Oxygen Evolution Reaction of Porous NiCo O Nanowires. <i>Small</i> , 2021 , e2106187	11	2
3	Dispersed FeO nanoparticles decorated with CoSiO hollow spheres for enhanced oxygen evolution reaction <i>Journal of Colloid and Interface Science</i> , 2021 , 611, 235-245	9.3	2
2	Duetting electronic structure modulation of Ru atoms in RuSe2@NC enables more moderate H* adsorption and water dissociation for hydrogen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2022 , 10, 7637-7644	13	1
1	Constructing a stable cobalt-nitrogen-carbon air cathode from coordinatively unsaturated zeolitic-imidazole frameworks for rechargeable zinc-air batteries. <i>Nano Research</i> ,1	10	O