## R Glenn Wells

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4969683/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Single Photon Emission Computed Tomography (SPECT) Myocardial Perfusion Imaging Guidelines:<br>Instrumentation, Acquisition, Processing, and Interpretation. Journal of Nuclear Cardiology, 2018, 25,<br>1784-1846.               | 2.1 | 241       |
| 2  | Dynamic SPECT Measurement of Absolute Myocardial Blood Flow in a Porcine Model. Journal of Nuclear Medicine, 2014, 55, 1685-1691.                                                                                                 | 5.0 | 134       |
| 3  | Half-Time SPECT Myocardial Perfusion Imaging with Attenuation Correction. Journal of Nuclear<br>Medicine, 2009, 50, 554-562.                                                                                                      | 5.0 | 103       |
| 4  | Optimization of SPECT Measurement of Myocardial Blood Flow with Corrections for Attenuation,<br>Motion, and Blood Binding Compared with PET. Journal of Nuclear Medicine, 2017, 58, 2013-2019.                                    | 5.0 | 88        |
| 5  | New SPECT and PET Radiopharmaceuticals for Imaging Cardiovascular Disease. BioMed Research<br>International, 2014, 2014, 1-24.                                                                                                    | 1.9 | 52        |
| 6  | Respiration-Averaged CT for Attenuation Correction in Canine Cardiac PET/CT. Journal of Nuclear Medicine, 2007, 48, 811-818.                                                                                                      | 5.0 | 48        |
| 7  | Single-Phase CT Aligned to Gated PET for Respiratory Motion Correction in Cardiac PET/CT. Journal of Nuclear Medicine, 2010, 51, 1182-1190.                                                                                       | 5.0 | 35        |
| 8  | Planar radionuclide angiography with a dedicated cardiac SPECT camera. Journal of Nuclear<br>Cardiology, 2013, 20, 358-366.                                                                                                       | 2.1 | 27        |
| 9  | Contemporary Cardiac SPECT Imaging—Innovations and Best Practices: An Information Statement from the American Society of Nuclear Cardiology. Journal of Nuclear Cardiology, 2018, 25, 1847-1860.                                  | 2.1 | 27        |
| 10 | Imaging of Gene Expression in Live Pancreatic Islet Cell Lines Using Dual-Isotope SPECT. Journal of<br>Nuclear Medicine, 2008, 49, 94-102.                                                                                        | 5.0 | 26        |
| 11 | Scatter correction improves concordance in SPECT MPI with a dedicated cardiac SPECT solid-state camera. Journal of Nuclear Cardiology, 2015, 22, 334-343.                                                                         | 2.1 | 25        |
| 12 | Respiratory phase alignment improves blood-flow quantification in Rb82 PET myocardial perfusion imaging. Medical Physics, 2013, 40, 022503.                                                                                       | 3.0 | 16        |
| 13 | Test-Retest Precision of Myocardial Blood Flow Measurements With <sup>99m</sup> Tc-Tetrofosmin<br>and Solid-State Detector Single Photon Emission Computed Tomography. Circulation: Cardiovascular<br>Imaging, 2020, 13, e009769. | 2.6 | 16        |
| 14 | Synthesis and characterization of 123I-CMICE-013: A potential SPECT myocardial perfusion imaging agent. Bioorganic and Medicinal Chemistry, 2013, 21, 2903-2911.                                                                  | 3.0 | 15        |
| 15 | Patient position alters attenuation effects in multipinhole cardiac SPECT. Medical Physics, 2015, 42, 1233-1240.                                                                                                                  | 3.0 | 14        |
| 16 | Validation of a Multimodality Flow Phantom and Its Application for Assessment of Dynamic SPECT and PET Technologies. IEEE Transactions on Medical Imaging, 2017, 36, 132-141.                                                     | 8.9 | 14        |
| 17 | New solid state cadmium-zinc-telluride technology for cardiac single photon emission computed tomographic myocardial perfusion imaging. Expert Review of Medical Devices, 2017, 14, 213-222.                                      | 2.8 | 14        |
| 18 | Contemporary Cardiac SPECT Imaging—Innovations and Best Practices: An Information Statement from the American Society of Nuclear Cardiology. Circulation: Cardiovascular Imaging, 2018, 11, e000020.                              | 2.6 | 14        |

R GLENN WELLS

| #  | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Dose reduction is good but it is image quality that matters. Journal of Nuclear Cardiology, 2020, 27, 238-240.                                                                                                                                          | 2.1 | 14        |
| 20 | Instrumentation in molecular imaging. Journal of Nuclear Cardiology, 2016, 23, 1343-1347.                                                                                                                                                               | 2.1 | 11        |
| 21 | Comparing slow-versus high-speed CT for attenuation correction of cardiac SPECT perfusion studies.<br>Journal of Nuclear Cardiology, 2012, 19, 719-726.                                                                                                 | 2.1 | 10        |
| 22 | Reduced dose measurement of absolute myocardial blood flow using dynamic SPECT imaging in a porcine model. Medical Physics, 2015, 42, 5075-5083.                                                                                                        | 3.0 | 9         |
| 23 | Evaluation of Apoptosis with <sup>99m</sup> Tc-rhAnnexin V-128 and Inflammation with<br><sup>18</sup> F-FDG in a Low-Dose Irradiation Model of Atherosclerosis in Apolipoprotein E–Deficient<br>Mice. Journal of Nuclear Medicine, 2016, 57, 1784-1791. | 5.0 | 8         |
| 24 | Single CT for attenuation correction of rest/stress cardiac SPECT perfusion imaging. Journal of Nuclear Cardiology, 2018, 25, 616-624.                                                                                                                  | 2.1 | 8         |
| 25 | A Clinical Tool to Identify Candidates for Stress-First Myocardial Perfusion Imaging. JACC:<br>Cardiovascular Imaging, 2020, 13, 2193-2202.                                                                                                             | 5.3 | 8         |
| 26 | Detection and severity classification of extracardiac interference in <sup>82</sup> Rb PET myocardial perfusion imaging. Medical Physics, 2014, 41, 102501.                                                                                             | 3.0 | 7         |
| 27 | Measuring SPECT myocardial blood flow at the University of Ottawa Heart Institute. Journal of<br>Nuclear Cardiology, 2021, 28, 1298-1303.                                                                                                               | 2.1 | 7         |
| 28 | Comparison of attenuation, dual-energy-window, and model-based scatter correction of low-count<br>SPECT to 82Rb PET/CT quantified myocardial perfusion scores. Journal of Nuclear Cardiology, 2013, 20,<br>785-796.                                     | 2.1 | 6         |
| 29 | Characterization of the four isomers of 123I-CMICE-013: A potential SPECT myocardial perfusion imaging agent. Bioorganic and Medicinal Chemistry, 2014, 22, 2033-2044.                                                                                  | 3.0 | 6         |
| 30 | Flow-Dependent Uptake of 123I-CMICE-013, a Novel SPECT Perfusion Agent, Compared with Standard<br>Tracers. Journal of Nuclear Medicine, 2015, 56, 764-770.                                                                                              | 5.0 | 6         |
| 31 | A modified TEW approach to scatter correction for Inâ€111 and Tcâ€99m dualâ€isotope smallâ€animal SPECT.<br>Medical Physics, 2016, 43, 5503-5513.                                                                                                       | 3.0 | 6         |
| 32 | Respiratory motion resulting in a pseudo-ischemia pattern on stress PET–CT imaging. Journal of<br>Nuclear Cardiology, 2016, 23, 159-160.                                                                                                                | 2.1 | 6         |
| 33 | Patientâ€specific estimation of spatially variant image noise for a pinhole cardiac <scp>SPECT</scp><br>camera. Medical Physics, 2018, 45, 2033-2047.                                                                                                   | 3.0 | 6         |
| 34 | Reduced acquisition times for measurement of myocardial blood flow with 99mTc-tetrofosmin and solid-state detector SPECT. Journal of Nuclear Cardiology, 2021, 28, 2518-2529.                                                                           | 2.1 | 6         |
| 35 | Acquisition, Processing, and Interpretation of PET 18F-FDG Viability and Inflammation Studies. Current Cardiology Reports, 2021, 23, 124.                                                                                                               | 2.9 | 6         |
| 36 | Development and optimization of SPECT gated blood pool cluster analysis for the prediction of CRT outcome. Medical Physics, 2014, 41, 072506.                                                                                                           | 3.0 | 5         |

R GLENN WELLS

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Quantitatively accurate activity measurements with a dedicated cardiac SPECT camera: Physical phantom experiments. Medical Physics, 2015, 43, 44-51.                                                    | 3.0 | 5         |
| 38 | Biodistribution and radiodosimetry of a novel myocardial perfusion tracer 123I-CMICE-013 in healthy rats. EJNMMI Research, 2014, 4, 16.                                                                 | 2.5 | 4         |
| 39 | The dream of imaging coronary artery inflammation with FDG PET/CT imaging. Journal of Nuclear Cardiology, 2017, 24, 1171-1174.                                                                          | 2.1 | 4         |
| 40 | Noise heterogeneity in attenuation-corrected cardiac SPECT images increases perfusion value uncertainty near the base of the heart. Journal of Nuclear Cardiology, 2021, 28, 1284-1293.                 | 2.1 | 4         |
| 41 | Guidelines on Setting Up Stations for Remote Viewing of Nuclear Medicine and Molecular Imaging<br>Studies During COVID-19. Journal of Nuclear Medicine Technology, 2021, 49, 2-6.                       | 0.8 | 4         |
| 42 | Toxicological Evaluation of a Rotenone Derivative in Rodents for Clinical Myocardial Perfusion<br>Imaging. Cardiovascular Toxicology, 2014, 14, 170-182.                                                | 2.7 | 3         |
| 43 | Analytically based photon scatter modeling for a multipinhole cardiac SPECT camera. Medical Physics, 2016, 43, 6098-6108.                                                                               | 3.0 | 3         |
| 44 | SPECT quantification of myocardial blood flow: A journey of a thousand miles begins with a single<br>step (Lao Tzu, Chinese philosopher, 604-531 BC). Journal of Nuclear Cardiology, 2019, 26, 772-774. | 2.1 | 3         |
| 45 | Patient-specific SPECT imaging protocols to standardize image noise. Journal of Nuclear Cardiology, 2021, 28, 225-233.                                                                                  | 2.1 | 3         |
| 46 | Feasibility of attenuation map alignment in pinhole cardiac SPECT using exponential data consistency conditions. Medical Physics, 2021, 48, 4955-4965.                                                  | 3.0 | 3         |
| 47 | Respiratory-motion errors in quantitative myocardial perfusion with PET/CT. , 2007, , .                                                                                                                 |     | 2         |
| 48 | Anatomical priors to improve image quality in small-animal SPECT/CT. , 2007, , .                                                                                                                        |     | 2         |
| 49 | Position dependent attenuation artifacts with a multi-pinhole dedicated cardiac camera. , 2012, , .                                                                                                     |     | 2         |
| 50 | Quantification of Myocardial Blood Flow with CZT SPECT Imaging: Is It Ready for Clinical Use?.<br>Current Cardiovascular Imaging Reports, 2017, 10, 1.                                                  | 0.6 | 2         |
| 51 | Does time-of-flight improve image quality in the heart?. Journal of Nuclear Cardiology, 2019, 26, 413-416.                                                                                              | 2.1 | 2         |
| 52 | Lesion contrast recovery for partial-volume averaging: Quantitative correction or qualitative enhancement?. Journal of Nuclear Cardiology, 2018, 25, 1757-1759.                                         | 2.1 | 1         |
| 53 | Cardiac myocardial perfusion imaging with new SPECT cameras: Comparing apples and oranges.<br>Journal of Nuclear Cardiology, 2020, 27, 1270-1273.                                                       | 2.1 | 1         |
| 54 | Dynamic phantoms: Making the right tool for the job. Journal of Nuclear Cardiology, 2021, 28, 2310-2312.                                                                                                | 2.1 | 1         |

| #  | Article                                                                                    | IF | CITATIONS |
|----|--------------------------------------------------------------------------------------------|----|-----------|
| 55 | Attenuation correction of multiplexed multi-pinhole microSPECT reconstruction. , 2010, , . |    | 0         |
|    |                                                                                            |    |           |