Melissa J Sharpe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4969261/publications.pdf

Version: 2024-02-01

MELISSA | SHADDE

#	Article	IF	CITATIONS
1	The prediction-error hypothesis of schizophrenia: new data point to circuit-specific changes in dopamine activity. Neuropsychopharmacology, 2022, 47, 628-640.	2.8	29
2	The effect of stress and reward on encoding future fear memories. Behavioural Brain Research, 2022, 417, 113587.	1.2	6
3	Dopamine errors drive excitatory and inhibitory components of backward conditioning in an outcome-specific manner. Current Biology, 2022, 32, 3210-3218.e3.	1.8	10
4	Prior Cocaine Use Alters the Normal Evolution of Information Coding in Striatal Ensembles during Value-Guided Decision-Making. Journal of Neuroscience, 2021, 41, 342-353.	1.7	10
5	Past experience shapes the neural circuits recruited for future learning. Nature Neuroscience, 2021, 24, 391-400.	7.1	22
6	The basolateral amygdala and lateral hypothalamus bias learning towards motivationally significant events. Current Opinion in Behavioral Sciences, 2021, 41, 92-97.	2.0	12
7	Higher-Order Conditioning and Dopamine: Charting a Path Forward. Frontiers in Behavioral Neuroscience, 2021, 15, 745388.	1.0	5
8	Causal evidence supporting the proposal that dopamine transients function as temporal difference prediction errors. Nature Neuroscience, 2020, 23, 176-178.	7.1	51
9	Dopamine transients do not act as model-free prediction errors during associative learning. Nature Communications, 2020, 11, 106.	5.8	44
10	Responding to preconditioned cues is devaluation sensitive and requires orbitofrontal cortex during cue-cue learning. ELife, 2020, 9, .	2.8	24
11	An Integrated Model of Action Selection: Distinct Modes of Cortical Control of Striatal Decision Making. Annual Review of Psychology, 2019, 70, 53-76.	9.9	76
12	What a relief! A role for dopamine in positive (but not negative) valence. Neuropsychopharmacology, 2018, 43, 1-2.	2.8	0
13	Evaluation of the hypothesis that phasic dopamine constitutes a cached-value signal. Neurobiology of Learning and Memory, 2018, 153, 131-136.	1.0	23
14	Model-based predictions for dopamine. Current Opinion in Neurobiology, 2018, 49, 1-7.	2.0	119
15	Does the Dopaminergic Error Signal Act Like a Cached-Value Prediction Error?. , 2018, , 243-258.		0
16	Modulation of attention and action in the medial prefrontal cortex of rats Psychological Review, 2018, 125, 822-843.	2.7	31
17	Dopamine transients are sufficient and necessary for acquisition of model-based associations. Nature Neuroscience, 2017, 20, 735-742.	7.1	222
18	Lateral Hypothalamic GABAergic Neurons Encode Reward Predictions that Are Relayed to the Ventral Tegmental Area to Regulate Learning. Current Biology, 2017, 27, 2089-2100.e5.	1.8	90

Melissa J Sharpe

#	Article	IF	CITATIONS
19	The Dopamine Prediction Error: Contributions to Associative Models of Reward Learning. Frontiers in Psychology, 2017, 8, 244.	1.1	66
20	Preconditioned cues have no value. ELife, 2017, 6, .	2.8	37
21	Back to basics: Making predictions in the orbitofrontal–amygdala circuit. Neurobiology of Learning and Memory, 2016, 131, 201-206.	1.0	58
22	Daily Exposure to Sucrose Impairs Subsequent Learning About Food Cues: A Role for Alterations in Ghrelin Signaling and Dopamine D2 Receptors. Neuropsychopharmacology, 2016, 41, 1357-1365.	2.8	19
23	The prelimbic cortex directs attention toward predictive cues during fear learning. Learning and Memory, 2015, 22, 289-293.	0.5	32
24	The State of the Orbitofrontal Cortex. Neuron, 2015, 88, 1075-1077.	3.8	17
25	The prelimbic cortex uses contextual cues to modulate responding towards predictive stimuli during fear renewal. Neurobiology of Learning and Memory, 2015, 118, 20-29.	1.0	38
26	The Prelimbic Cortex Contributes to the Down-Regulation of Attention Toward Redundant Cues. Cerebral Cortex, 2014, 24, 1066-1074.	1.6	40
27	The prelimbic cortex uses higher-order cues to modulate both the acquisition and expression of conditioned fear. Frontiers in Systems Neuroscience, 2014, 8, 235.	1.2	43
28	The chemotherapy agent oxaliplatin impairs the renewal of fear to an extinguished conditioned stimulus in rats. Behavioural Brain Research, 2012, 227, 295-299.	1.2	10