
Yong-Jun Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4969032/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	OCT4-induced oligodendrocyte progenitor cells promote remyelination and ameliorate disease. Npj Regenerative Medicine, 2022, 7, 4.	2.5	7
2	Direct neuronal infection of SARS-CoV-2 reveals cellular and molecular pathology of chemosensory impairment of COVID-19 patients. Emerging Microbes and Infections, 2022, 11, 407-412.	3.0	25
3	Direct Conversion to Achieve Glial Cell Fates: Oligodendrocytes and Schwann Cells. International Journal of Stem Cells, 2022, 15, 14-25.	0.8	7
4	Novel culture system via wirelessly controllable optical stimulation of the FGF signaling pathway for human and pig pluripotency. Biomaterials, 2021, 269, 120222.	5.7	5
5	A metastasis suppressor Pt-dendrimer nanozyme for the alleviation of glioblastoma. Journal of Materials Chemistry B, 2021, 9, 4015-4023.	2.9	12
6	CReVIS-Seq: A highly accurate and multiplexable method for genome-wide mapping of lentiviral integration sites. Molecular Therapy - Methods and Clinical Development, 2021, 20, 792-800.	1.8	9
7	Inhibition of the Combinatorial Signaling of Transforming Growth Factor-Beta and NOTCH Promotes Myotube Formation of Human Pluripotent Stem Cell-Derived Skeletal Muscle Progenitor Cells. Cells, 2021, 10, 1649.	1.8	6
8	NOP53 Suppresses Autophagy through ZKSCAN3-Dependent and -Independent Pathways. International Journal of Molecular Sciences, 2021, 22, 9318.	1.8	4
9	Specificity Assessment of CRISPR Genome Editing of Oncogenic EGFR Point Mutation with Single-Base Differences. Molecules, 2020, 25, 52.	1.7	6
10	Tyrosine Phosphorylation of the Kv2.1 Channel Contributes to Injury in Brain Ischemia. International Journal of Molecular Sciences, 2020, 21, 9538.	1.8	1
11	Transcriptional landscape of myogenesis from human pluripotent stem cells reveals a key role of TWIST1 in maintenance of skeletal muscle progenitors. ELife, 2020, 9, .	2.8	33
12	A benzothioate native chemical ligation-based cysteine-selective fluorescent probe. Dyes and Pigments, 2019, 171, 107764.	2.0	11
13	Comparison of three congruent patient-specific cell types for the modelling of a human genetic Schwann-cell disorder. Nature Biomedical Engineering, 2019, 3, 571-582.	11.6	18
14	Visualization of Altered Hippocampal Connectivity in an Animal Model of Alzheimer's Disease. Molecular Neurobiology, 2018, 55, 7886-7899.	1.9	20
15	Role of the JNK Pathway in Varicella-Zoster Virus Lytic Infection and Reactivation. Journal of Virology, 2017, 91, .	1.5	36
16	Design of a high-throughput human neural crest cell migration assay to indicate potential developmental toxicants. ALTEX: Alternatives To Animal Experimentation, 2017, 34, 75-94.	0.9	26
17	GLTSCR2 promotes the nucleoplasmic translocation and subsequent degradation of nucleolar ARF. Oncotarget, 2017, 8, 16293-16302.	0.8	8
18	c-Jun N-terminal kinase regulates the nucleoplasmic translocation and stability of nucleolar GLTSCR2 protein. Biochemical and Biophysical Research Communications, 2016, 472, 95-100.	1.0	4

Yong-Jun Kim

#	Article	IF	CITATIONS
19	Concordant but Varied Phenotypes among Duchenne Muscular Dystrophy Patient-Specific Myoblasts Derived using a Human iPSC-Based Model. Cell Reports, 2016, 15, 2301-2312.	2.9	141
20	The pharmacological stimulation of Nurr1 improves cognitive functions via enhancement of adult hippocampal neurogenesis. Stem Cell Research, 2016, 17, 534-543.	0.3	32
21	Functional Coupling with Cardiac Muscle Promotes Maturation of hPSC-Derived Sympathetic Neurons. Cell Stem Cell, 2016, 19, 95-106.	5.2	91
22	Cellular stage specific functional analysis of REX1: In human embryonic stem cells. Proteomics, 2015, 15, 2147-2149.	1.3	0
23	Generation of Multipotent Induced Neural Crest by Direct Reprogramming of Human Postnatal Fibroblasts with a Single Transcription Factor. Cell Stem Cell, 2014, 15, 497-506.	5.2	128
24	Candidate ALS Therapeutics Motor toward "InÂVitro Clinical Trials― Cell Stem Cell, 2013, 12, 633-634.	5.2	9
25	Large-scale screening using familial dysautonomia induced pluripotent stem cells identifies compounds that rescue IKBKAP expression. Nature Biotechnology, 2012, 30, 1244-1248.	9.4	211
26	Involvement of GLTSCR2 in the DNA Damage Response. American Journal of Pathology, 2011, 179, 1257-1264.	1.9	31
27	BNip3 is a mediator of TNF-induced necrotic cell death. Apoptosis: an International Journal on Programmed Cell Death, 2011, 16, 114-126.	2.2	34
28	Expression and clinicopathological significance of human growth and transformationâ€dependent protein (HGTDâ€₽) in uterine cervical cancer. Histopathology, 2010, 57, 479-482.	1.6	3
29	Caspase-9-Dependent Nuclear Translocation of Cytochrome <i>c</i> in Hypoxic Injury. Pathobiology, 2010, 77, 320-327.	1.9	6
30	The critical role of ERK in death resistance and invasiveness of hypoxia-selected glioblastoma cells. BMC Cancer, 2009, 9, 27.	1.1	34
31	GLTSCR2 Sensitizes Cells to Hypoxic Injury without Involvement of Mitochondrial Apoptotic Cascades. Pathobiology, 2007, 74, 301-308.	1.9	7
32	mHGTD-P mediates hypoxic neuronal cell death via the release of apoptosis-inducing factor. Neuroscience Letters, 2007, 416, 144-149.	1.0	9