Oleg A Zadvornyy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4969018/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Kinetics of Electron Transfer from CdS Nanorods to the MoFe Protein of Nitrogenase. Journal of Physical Chemistry C, 2022, 126, 8425-8435.	3.1	7
2	Bioenergetics Theory and Components Flavin-Based Electron Bifurcation. , 2021, , 130-142.		0
3	The unique Phe–His dyad of 2-ketopropyl coenzyme M oxidoreductase/carboxylase selectively promotes carboxylation and S–C bond cleavage. Journal of Biological Chemistry, 2021, 297, 100961.	3.4	1
4	Tuning Catalytic Bias of Hydrogen Gas Producing Hydrogenases. Journal of the American Chemical Society, 2020, 142, 1227-1235.	13.7	55
5	A Positive Charge in the Outer Coordination Sphere of an Artificial Enzyme Increases CO ₂ Hydrogenation. Organometallics, 2020, 39, 1532-1544.	2.3	19
6	Insights into the unique carboxylation reactions in the metabolism of propylene and acetone. Biochemical Journal, 2020, 477, 2027-2038.	3.7	3
7	Protein Scaffold Activates Catalytic CO ₂ Hydrogenation by a Rhodium Bis(diphosphine) Complex. ACS Catalysis, 2019, 9, 620-625.	11.2	30
8	Structural characterization of the nitrogenase molybdenum-iron protein with the substrate acetylene trapped near the active site. Journal of Inorganic Biochemistry, 2018, 180, 129-134.	3.5	21
9	Structural characterization of the P1+ intermediate state of the P-cluster of nitrogenase. Journal of Biological Chemistry, 2018, 293, 9629-9635.	3.4	44
10	A new era for electron bifurcation. Current Opinion in Chemical Biology, 2018, 47, 32-38.	6.1	54
11	Mechanistic insights into energy conservation by flavin-based electron bifurcation. Nature Chemical Biology, 2017, 13, 655-659.	8.0	121
12	Reduction Potentials of [FeFe]-Hydrogenase Accessory Iron–Sulfur Clusters Provide Insights into the Energetics of Proton Reduction Catalysis. Journal of the American Chemical Society, 2017, 139, 9544-9550.	13.7	42
13	Structural Characterization of Poised States in the Oxygen Sensitive Hydrogenases and Nitrogenases. Methods in Enzymology, 2017, 595, 213-259.	1.0	6
14	Two functionally distinct NADP+-dependent ferredoxin oxidoreductases maintain the primary redox balance of Pyrococcus furiosus. Journal of Biological Chemistry, 2017, 292, 14603-14616.	3.4	54
15	Biochemical and Structural Characterization of Enolase from Chloroflexus aurantiacus: Evidence for a Thermophilic Origin. Frontiers in Bioengineering and Biotechnology, 2015, 3, 74.	4.1	9
16	Biochemical and Structural Properties of a Thermostable Mercuric Ion Reductase from Metallosphaera sedula. Frontiers in Bioengineering and Biotechnology, 2015, 3, 97.	4.1	14
17	[FeFe]-Hydrogenase Oxygen Inactivation Is Initiated at the H Cluster 2Fe Subcluster. Journal of the American Chemical Society, 2015, 137, 1809-1816.	13.7	119
18	Fe Protein-Independent Substrate Reduction by Nitrogenase MoFe Protein Variants. Biochemistry, 2015, 54, 2456-2462.	2.5	38

#	Article	IF	CITATIONS
19	Growth of Chlamydomonas reinhardtii in acetate-free medium when co-cultured with alginate-encapsulated, acetate-producing strains of Synechococcus sp. PCC 7002. Biotechnology for Biofuels, 2014, 7, 154.	6.2	28
20	Goniometer-based femtosecond crystallography with X-ray free electron lasers. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17122-17127.	7.1	122
21	Photo-induced H2 production by [NiFe]-hydrogenase from T. roseopersicina covalently linked to a Ru(II) photosensitizer. Journal of Inorganic Biochemistry, 2012, 106, 151-155.	3.5	38
22	Hydrogen Enhances Nickel Tolerance in the Purple Sulfur Bacterium Thiocapsa roseopersicina. Environmental Science & Technology, 2010, 44, 834-840.	10.0	9