
Victoria Orphan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4968990/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Scientists' warning to humanity: microorganisms and climate change. Nature Reviews Microbiology, 2019, 17, 569-586.	13.6	1,138
2	Methane-Consuming Archaea Revealed by Directly Coupled Isotopic and Phylogenetic Analysis. Science, 2001, 293, 484-487.	6.0	957
3	Manganese- and Iron-Dependent Marine Methane Oxidation. Science, 2009, 325, 184-187.	6.0	873
4	Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science, 2015, 350, 434-438.	6.0	677
5	Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7663-7668.	3.3	604
6	Comparative Analysis of Methane-Oxidizing Archaea and Sulfate-Reducing Bacteria in Anoxic Marine Sediments. Applied and Environmental Microbiology, 2001, 67, 1922-1934.	1.4	594
7	Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature, 2015, 526, 531-535.	13.7	529
8	Culture-Dependent and Culture-Independent Characterization of Microbial Assemblages Associated with High-Temperature Petroleum Reservoirs. Applied and Environmental Microbiology, 2000, 66, 700-711.	1.4	441
9	Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science, 2016, 351, 703-707.	6.0	346
10	Molecular and isotopic analysis of anaerobic methane-oxidizing communities in marine sediments. Organic Geochemistry, 2000, 31, 1685-1701.	0.9	321
11	Deep-Sea Archaea Fix and Share Nitrogen in Methane-Consuming Microbial Consortia. Science, 2009, 326, 422-426.	6.0	295
12	Trace Metal Requirements for Microbial Enzymes Involved in the Production and Consumption of Methane and Nitrous Oxide. Frontiers in Microbiology, 2012, 3, 61.	1.5	291
13	Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7052-7057.	3.3	261
14	Authigenic carbonate formation at hydrocarbon seeps in continental margin sediments: A comparative study. Deep-Sea Research Part II: Topical Studies in Oceanography, 2007, 54, 1268-1291.	0.6	229
15	Anaerobic methane oxidation coupled to manganese reduction by members of the <i>Methanoperedenaceae</i> . ISME Journal, 2020, 14, 1030-1041.	4.4	203
16	<scp><i>In situ</i></scp> visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry. Environmental Microbiology, 2014, 16, 2568-2590.	1.8	190
17	Visualizing in situ translational activity for identifying and sorting slow-growing archaealâ^'bacterial consortia. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4069-78.	3.3	180
18	Consumption of Methane and CO2 by Methanotrophic Microbial Mats from Gas Seeps of the Anoxic Black Sea. Applied and Environmental Microbiology, 2007, 73, 2271-2283.	1.4	157

#	Article	IF	CITATIONS
19	Evolutionary innovation: a bone-eating marine symbiosis. Environmental Microbiology, 2005, 7, 1369-1378.	1.8	154
20	Novel Forms of Structural Integration between Microbes and a Hydrothermal Vent Gastropod from the Indian Ocean. Applied and Environmental Microbiology, 2004, 70, 3082-3090.	1.4	150
21	A novel family of functional operons encoding methane/ammonia monooxygenaseâ€related proteins in gammaproteobacterial methanotrophs. Environmental Microbiology Reports, 2011, 3, 91-100.	1.0	149
22	Micron-scale mapping of sulfur cycling across the oxycline of a cyanobacterial mat: a paired nanoSIMS and CARD-FISH approach. ISME Journal, 2008, 2, 749-759.	4.4	146
23	Variations in Archaeal and Bacterial Diversity Associated with the Sulfate-Methane Transition Zone in Continental Margin Sediments (Santa Barbara Basin, California). Applied and Environmental Microbiology, 2009, 75, 1487-1499.	1.4	145
24	Growth and Methane Oxidation Rates of Anaerobic Methanotrophic Archaea in a Continuous-Flow Bioreactor. Applied and Environmental Microbiology, 2003, 69, 5472-5482.	1.4	133
25	The rise and fall of methanotrophy following a deepwater oil-well blowout. Nature Geoscience, 2014, 7, 423-427.	5.4	121
26	Geological, geochemical, and microbiological heterogeneity of the seafloor around methane vents in the Eel River Basin, offshore California. Chemical Geology, 2004, 205, 265-289.	1.4	120
27	Methyl sulfides as intermediates in the anaerobic oxidation of methane. Environmental Microbiology, 2008, 10, 162-173.	1.8	118
28	Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4139-47.	3.3	112
29	Microscale sulfur cycling in the phototrophic pink berry consortia of the <scp>S</scp> ippewissett <scp>S</scp> alt <scp>M</scp> arsh. Environmental Microbiology, 2014, 16, 3398-3415.	1.8	106
30	Trace incorporation of heavy water reveals slow and heterogeneous pathogen growth rates in cystic fibrosis sputum. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E110-6.	3.3	104
31	Age Mosaicism across Multiple Scales in Adult Tissues. Cell Metabolism, 2019, 30, 343-351.e3.	7.2	96
32	Heavy water and ¹⁵ <scp>N</scp> labelling with <scp>N</scp> ano <scp>SIMS</scp> analysis reveals growth rateâ€dependent metabolic heterogeneity in chemostats. Environmental Microbiology, 2015, 17, 2542-2556.	1.8	94
33	Methyl-compound use and slow growth characterize microbial life in 2-km-deep subseafloor coal and shale beds. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9206-E9215.	3.3	94
34	Bacterial community shifts in taxa and diversity in response to localized organic loading in the deep sea. Environmental Microbiology, 2010, 12, 344-363.	1.8	90
35	Phylogenomic analysis of <i>Candidatus</i> â€~Izimaplasma' species: free-living representatives from a <i>Tenericutes</i> clade found in methane seeps. ISME Journal, 2016, 10, 2679-2692.	4.4	88
36	Planktonic and Sediment-Associated Aerobic Methanotrophs in Two Seep Systems along the North American Margin. Applied and Environmental Microbiology, 2008, 74, 3985-3995.	1.4	85

#	Article	IF	CITATIONS
37	Patterns of ¹⁵ N assimilation and growth of methanotrophic ANMEâ€2 archaea and sulfateâ€reducing bacteria within structured syntrophic consortia revealed by FISHâ€SIMS. Environmental Microbiology, 2009, 11, 1777-1791.	1.8	85
38	NanoSIMS imaging reveals metabolic stratification within current-producing biofilms. Proceedings of the United States of America, 2019, 116, 20716-20724.	3.3	83
39	A hydrothermal seep on the Costa Rica margin: middle ground in a continuum of reducing ecosystems. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2580-2588.	1.2	81
40	Characterization and spatial distribution of methanogens and methanogenic biosignatures in hypersaline microbial mats of Baja California. Geobiology, 2008, 6, 376-393.	1.1	80
41	Deep-biosphere methane production stimulated by geofluids in the Nankai accretionary complex. Science Advances, 2018, 4, eaao4631.	4.7	79
42	Filamentous sulfur bacteria preserved in modern and ancient phosphatic sediments: implications for the role of oxygen and bacteria in phosphogenesis. Geobiology, 2013, 11, 397-405.	1.1	78
43	Distributions of putative aerobic methanotrophs in diverse pelagic marine environments. ISME Journal, 2010, 4, 700-710.	4.4	77
44	Divergent methyl-coenzyme M reductase genes in a deep-subseafloor Archaeoglobi. ISME Journal, 2019, 13, 1269-1279.	4.4	76
45	Global Molecular Analyses of Methane Metabolism in Methanotrophic Alphaproteobacterium, Methylosinus trichosporium OB3b. Part II. Metabolomics and 13C-Labeling Study. Frontiers in Microbiology, 2013, 4, 70.	1.5	75
46	Carbonate-hosted methanotrophy represents an unrecognized methane sink in the deep sea. Nature Communications, 2014, 5, 5094.	5.8	75
47	Peptidoglycan Production by an Insect-Bacterial Mosaic. Cell, 2019, 179, 703-712.e7.	13.5	75
48	Temporal evolution of methane cycling and phylogenetic diversity of archaea in sediments from a deep-sea whale-fall in Monterey Canyon, California. ISME Journal, 2008, 2, 204-220.	4.4	74
49	Methane Seep Carbonates Host Distinct, Diverse, and Dynamic Microbial Assemblages. MBio, 2015, 6, e01348-15.	1.8	74
50	Methyloprofundus sedimenti gen. nov., sp. nov., an obligate methanotroph from ocean sediment belonging to the †deep sea-1' clade of marine methanotrophs. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 251-259.	0.8	74
51	Autotrophic and heterotrophic acquisition of carbon and nitrogen by a mixotrophic chrysophyte established through stable isotope analysis. ISME Journal, 2017, 11, 2022-2034.	4.4	74
52	Subnanogram proteomics: Impact of LC column selection, MS instrumentation and data analysis strategy on proteome coverage for trace samples. International Journal of Mass Spectrometry, 2018, 427, 4-10.	0.7	67
53	Methods for unveiling cryptic microbial partnerships in nature. Current Opinion in Microbiology, 2009, 12, 231-237.	2.3	66
54	Activity and interactions of methane seep microorganisms assessed by parallel transcription and FISH-NanoSIMS analyses. ISME Journal, 2016, 10, 678-692.	4.4	66

#	Article	IF	CITATIONS
55	Geobiological investigations using secondary ion mass spectrometry: microanalysis of extant and paleoâ€microbial processes. Geobiology, 2009, 7, 360-372.	1.1	64
56	The gut of the finch: uniqueness of the gut microbiome of the Galápagos vampire finch. Microbiome, 2018, 6, 167.	4.9	63
57	Geochemical Influence on Diversity and Microbial Processes in High Temperature Oil Reservoirs. Geomicrobiology Journal, 2003, 20, 295-311.	1.0	62
58	Lipid biomarker and phylogenetic analyses to reveal archaeal biodiversity and distribution in hypersaline microbial mat and underlying sediment. Geobiology, 2008, 6, 394-410.	1.1	62
59	Classifying the metal dependence of uncharacterized nitrogenases. Frontiers in Microbiology, 2012, 3, 419.	1.5	62
60	Methane-Fueled Syntrophy through Extracellular Electron Transfer: Uncovering the Genomic Traits Conserved within Diverse Bacterial Partners of Anaerobic Methanotrophic Archaea. MBio, 2017, 8, .	1.8	62
61	Comparative genomics reveals electron transfer and syntrophic mechanisms differentiating methanotrophic and methanogenic archaea. PLoS Biology, 2022, 20, e3001508.	2.6	62
62	Chemotrophic Microbial Mats and Their Potential for Preservation in the Rock Record. Astrobiology, 2009, 9, 843-859.	1.5	60
63	Spatial distribution of nitrogen fixation in methane seep sediment and the role of the <scp>ANME</scp> archaea. Environmental Microbiology, 2014, 16, 3012-3029.	1.8	60
64	Nitrate-based niche differentiation by distinct sulfate-reducing bacteria involved in the anaerobic oxidation of methane. ISME Journal, 2014, 8, 150-163.	4.4	53
65	Interrogating marine virusâ€host interactions and elemental transfer with BONCAT and nanoSIMSâ€based methods. Environmental Microbiology, 2018, 20, 671-692.	1.8	53
66	Extensive carbon isotopic heterogeneity among methane seep microbiota. Environmental Microbiology, 2009, 11, 2207-2215.	1.8	51
67	Identification of Diazotrophic Microorganisms in Marine Sediment via Fluorescence In Situ Hybridization Coupled to Nanoscale Secondary Ion Mass Spectrometry (FISH-NanoSIMS). Methods in Enzymology, 2011, 486, 281-305.	0.4	51
68	Lateral Gene Transfer Drives Metabolic Flexibility in the Anaerobic Methane-Oxidizing Archaeal Family <i>Methanoperedenaceae</i> . MBio, 2020, 11, .	1.8	51
69	The effect of sulfate concentration on (sub)millimeter-scale sulfide δ34S in hypersaline cyanobacterial mats over the diurnal cycle. Geochimica Et Cosmochimica Acta, 2009, 73, 6187-6204.	1.6	50
70	Methane on Mars and Habitability: Challenges and Responses. Astrobiology, 2018, 18, 1221-1242.	1.5	50
71	Archaea in metazoan diets: implications for food webs and biogeochemical cycling. ISME Journal, 2012, 6, 1602-1612.	4.4	49
72	Metabolic strategies of marine subseafloor Chloroflexi inferred from genome reconstructions. Environmental Microbiology, 2020, 22, 3188-3204.	1.8	49

#	Article	IF	CITATIONS
73	Polyphosphate Storage during Sporulation in the Gram-Negative Bacterium Acetonema longum. Journal of Bacteriology, 2013, 195, 3940-3946.	1.0	48
74	Autonomous Application of Quantitative PCR in the Deep Sea: In Situ Surveys of Aerobic Methanotrophs Using the Deep-Sea Environmental Sample Processor. Environmental Science & Technology, 2013, 47, 9339-9346.	4.6	47
75	Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methaneâ€oxidizing microbial consortia in sulphidic marine sediments. Environmental Microbiology, 2014, 16, 1592-1611.	1.8	47
76	Characterization of microbial associations with methanotrophic archaea and sulfate-reducing bacteria through statistical comparison of nested Magneto-FISH enrichments. PeerJ, 2016, 4, e1913.	0.9	43
77	Abundance and distribution of diverse membraneâ€bound monooxygenase (<scp>C</scp> uâ€ <scp>MMO</scp>) genes within the <scp>C</scp> osta <scp>R</scp> ica oxygen minimum zone. Environmental Microbiology Reports, 2013, 5, 414-423.	1.0	42
78	Comparison of Archaeal and Bacterial Diversity in Methane Seep Carbonate Nodules and Host Sediments, Eel River Basin and Hydrate Ridge, USA. Microbial Ecology, 2015, 70, 766-784.	1.4	40
79	Microbial eukaryotic distributions and diversity patterns in a deepâ€sea methane seep ecosystem. Environmental Microbiology, 2016, 18, 3022-3043.	1.8	40
80	Starvation and recovery in the deepâ€sea methanotroph <scp><i>M</i></scp> <i>ethyloprofundus sedimenti</i> . Molecular Microbiology, 2017, 103, 242-252.	1.2	40
81	Microsporidia-nematode associations in methane seeps reveal basal fungal parasitism in the deep sea. Frontiers in Microbiology, 2014, 5, 43.	1.5	39
82	Widespread nitrogen fixation in sediments from diverse deepâ€sea sites of elevated carbon loading. Environmental Microbiology, 2018, 20, 4281-4296.	1.8	39
83	The next frontier for planetary and human exploration. Nature Astronomy, 2019, 3, 116-120.	4.2	39
84	Methanotrophic bacterial symbionts fuel dense populations of deep-sea feather duster worms (Sabellida, Annelida) and extend the spatial influence of methane seepage. Science Advances, 2020, 6, eaay8562.	4.7	39
85	Multicellular photoâ€magnetotactic bacteria. Environmental Microbiology Reports, 2011, 3, 233-238.	1.0	38
86	A novel sister clade to the enterobacteria microviruses (family) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 227 Td (<sc Microbiology, 2015, 17, 3708-3721.</sc 	:p> <i>M1.8</i>	i> <i>io 37</i>
87	Genomic Reconstruction of an Uncultured Hydrothermal Vent Gammaproteobacterial Methanotroph (Family Methylothermaceae) Indicates Multiple Adaptations to Oxygen Limitation. Frontiers in Microbiology, 2015, 6, 1425.	1.5	36
88	Pseudofossils in relict methane seep carbonates resemble endemic microbial consortia. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 285, 131-142.	1.0	34
89	Proteomic Stable Isotope Probing Reveals Biosynthesis Dynamics of Slow Growing Methane Based Microbial Communities. Frontiers in Microbiology, 2016, 7, 563.	1.5	34
90	Metabolic marker gene mining provides insight in global <i>mcrA</i> diversity and, coupled with targeted genome reconstruction, sheds further light on metabolic potential of the <i>Methanomassiliicoccales</i> . PeerJ, 2018, 6, e5614.	0.9	34

#	Article	IF	CITATIONS
91	Microbial abundance and diversity patterns associated with sediments and carbonates from the methane seep environments of Hydrate Ridge, OR. Frontiers in Marine Science, 2014, 1, .	1.2	33
92	Comparative Genomics and Proteomic Analysis of Assimilatory Sulfate Reduction Pathways in Anaerobic Methanotrophic Archaea. Frontiers in Microbiology, 2018, 9, 2917.	1.5	33
93	Convergent evolution of unusual complex I homologs with increased proton pumping capacity: energetic and ecological implications. ISME Journal, 2018, 12, 2668-2680.	4.4	33
94	Role of APS reductase in biogeochemical sulfur isotope fractionation. Nature Communications, 2019, 10, 44.	5.8	33
95	Autoendoliths: a distinct type of rockâ€hosted microbial life. Geobiology, 2015, 13, 303-307.	1.1	32
96	Metabolic associations with archaea drive shifts in hydrogen isotope fractionation in sulfateâ€reducing bacterial lipids in cocultures and methane seeps. Geobiology, 2015, 13, 462-477.	1.1	31
97	Measurement of rare isotopologues of nitrous oxide by highâ€resolution multiâ€collector mass spectrometry. Rapid Communications in Mass Spectrometry, 2016, 30, 1923-1940.	0.7	31
98	Experimentally-validated correlation analysis reveals new anaerobic methane oxidation partnerships with consortium-level heterogeneity in diazotrophy. ISME Journal, 2021, 15, 377-396.	4.4	31
99	Methoxyl stable isotopic constraints on the origins and limits of coal-bed methane. Science, 2021, 374, 894-897.	6.0	31
100	Unique mobile elements and scalable gene flow at the prokaryote–eukaryote boundary revealed by circularized Asgard archaea genomes. Nature Microbiology, 2022, 7, 200-212.	5.9	29
101	Spatial variability in photosynthetic and heterotrophic activity drives localized Ĩ´ ¹³ C _{org} fluctuations and carbonate precipitation in hypersaline microbial mats. Geobiology, 2014, 12, 557-574.	1.1	28
102	Detection of Protein-Synthesizing Microorganisms in the Environment via Bioorthogonal Noncanonical Amino Acid Tagging (BONCAT). Springer Protocols, 2015, , 145-157.	0.1	27
103	Quantification and isotopic analysis of intracellular sulfur metabolites in the dissimilatory sulfate reduction pathway. Geochimica Et Cosmochimica Acta, 2017, 206, 57-72.	1.6	27
104	Dimorphism in methane seep-dwelling ecotypes of the largest known bacteria. ISME Journal, 2011, 5, 1926-1935.	4.4	25
105	Subgroup Characteristics of Marine Methane-Oxidizing ANME-2 Archaea and Their Syntrophic Partners as Revealed by Integrated Multimodal Analytical Microscopy. Applied and Environmental Microbiology, 2018, 84, .	1.4	25
106	The Cell and the Sum of Its Parts: Patterns of Complexity in Biosignatures as Revealed by Deep UV Raman Spectroscopy. Frontiers in Microbiology, 2019, 10, 679.	1.5	24
107	Sulfate differentially stimulates but is not respired by diverse anaerobic methanotrophic archaea. ISME Journal, 2022, 16, 168-177.	4.4	21
108	Active sulfur cycling by diverse mesophilic and thermophilic microorganisms in terrestrial mud volcanoes of <scp>A</scp> zerbaijan. Environmental Microbiology, 2012, 14, 3271-3286.	1.8	20

#	Article	IF	CITATIONS
109	Stable Isotope Phenotyping via Cluster Analysis of NanoSIMS Data As a Method for Characterizing Distinct Microbial Ecophysiologies and Sulfur-Cycling in the Environment. Frontiers in Microbiology, 2016, 7, 774.	1.5	20
110	Spatially resolved capture of hydrogen sulfide from the water column and sedimentary pore waters for abundance and stable isotopic analysis. Marine Chemistry, 2017, 197, 26-37.	0.9	20
111	The Potential for Biologically Catalyzed Anaerobic Methane Oxidation on Ancient Mars. Astrobiology, 2014, 14, 292-307.	1.5	19
112	Microbial interactions in the anaerobic oxidation of methane: model simulations constrained by process rates and activity patterns. Environmental Microbiology, 2019, 21, 631-647.	1.8	19
113	Aerobic and Anaerobic Methanotrophic Communities Associated with Methane Hydrates Exposed on the Seafloor: A High-Pressure Sampling and Stable Isotope-Incubation Experiment. Frontiers in Microbiology, 2017, 8, 2569.	1.5	18
114	Colonial Tube-Dwelling Ciliates Influence Methane Cycling and Microbial Diversity within Methane Seep Ecosystems. Frontiers in Marine Science, 2017, 3, .	1.2	17
115	Microbial communities of Auka hydrothermal sediments shed light on vent biogeography and the evolutionary history of thermophily. ISME Journal, 2022, 16, 1750-1764.	4.4	16
116	Microbial succession and dynamics in meromictic Mono Lake, California. Geobiology, 2021, 19, 376-393.	1.1	15
117	The Apparent Involvement of ANMEs in Mineral Dependent Methane Oxidation, as an Analog for Possible Martian Methanotrophy. Life, 2011, 1, 19-33.	1.1	14
118	Precise determination of equilibrium sulfur isotope effects during volatilization and deprotonation of dissolved H2S. Geochimica Et Cosmochimica Acta, 2019, 248, 242-251.	1.6	14
119	Bacterial growth in multicellular aggregates leads to the emergence of complex life cycles. Current Biology, 2022, 32, 3059-3069.e7.	1.8	14
120	Characterization of Chemosynthetic Microbial Mats Associated with Intertidal Hydrothermal Sulfur Vents in White Point, San Pedro, CA, USA. Frontiers in Microbiology, 2016, 7, 1163.	1.5	13
121	Trace Metal Imaging of Sulfate-Reducing Bacteria and Methanogenic Archaea at Single-Cell Resolution by Synchrotron X-Ray Fluorescence Imaging. Geomicrobiology Journal, 2018, 35, 81-89.	1.0	13
122	Evidence of a Streamlined Extracellular Electron Transfer Pathway from Biofilm Structure, Metabolic Stratification, and Long-Range Electron Transfer Parameters. Applied and Environmental Microbiology, 2021, 87, e0070621.	1.4	13
123	Rapid quantification and isotopic analysis of dissolved sulfur species. Rapid Communications in Mass Spectrometry, 2017, 31, 791-803.	0.7	11
124	A chemosynthetic ecotone—"chemotoneâ€â€"in the sediments surrounding deepâ€sea methane seeps. Limnology and Oceanography, 2021, 66, 1687-1702.	1.6	11
125	Whole Cell Immunomagnetic Enrichment of Environmental Microbial Consortia Using rRNA-Targeted Magneto-FISH. Methods in Enzymology, 2013, 531, 21-44.	0.4	10
126	Controls on Interspecies Electron Transport and Size Limitation of Anaerobically Methane-Oxidizing Microbial Consortia. MBio, 2021, 12, .	1.8	9

#	Article	IF	CITATIONS
127	Carbonate-hosted microbial communities are prolific and pervasive methane oxidizers at geologically diverse marine methane seep sites. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	8
128	Community Structure and Microbial Associations in Sediment-Free Methanotrophic Enrichment Cultures from a Marine Methane Seep. Applied and Environmental Microbiology, 2022, 88, .	1.4	8
129	Exploration of Subseafloor Life and the Biosphere Through IODP (2003–2013). Developments in Marine Geology, 2014, 7, 39-63.	0.4	7
130	Monodeuterated Methane, an Isotopic Tool To Assess Biological Methane Metabolism Rates. MSphere, 2017, 2, .	1.3	7
131	Patterns of in situ Mineral Colonization by Microorganisms in a ~60°C Deep Continental Subsurface Aquifer. Frontiers in Microbiology, 2020, 11, 536535.	1.5	7
132	Spatially Resolved Electron Transport through Anodeâ€Respiring Geobacter sulfurreducens Biofilms: Controls and Constraints. ChemElectroChem, 2021, 8, 1747-1758.	1.7	7
133	Early impacts of climate change on a coastal marine microbial mat ecosystem. Science Advances, 2022, 8, .	4.7	7
134	Method for Assessing Mineral Composition-Dependent Patterns in Microbial Diversity Using Magnetic and Density Separation. Geomicrobiology Journal, 2012, 29, 435-449.	1.0	6
135	Hydrogen for dinner. Nature, 2011, 476, 154-155.	13.7	5
136	Members of the methanotrophic genus <i>Methylomarinum</i> inhabit inland mud pots. PeerJ, 2016, 4, e2116.	0.9	5
137	Carbon isotopic heterogeneity of coenzyme F430 and membrane lipids in methaneâ€oxidizing archaea. Geobiology, 2019, 17, 611-627.	1.1	3
138	Sulfur isotope fractionations constrain the biological cycling of dimethylsulfoniopropionate in the upper ocean. Limnology and Oceanography, 2021, 66, 3607-3618.	1.6	3
139	A Reduced F ₄₂₀ -Dependent Nitrite Reductase in an Anaerobic Methanotrophic Archaeon. Journal of Bacteriology, 2022, 204, .	1.0	3
140	Spatially Resolved Electron Transport through Anodeâ€Respiring Geobacter sulfurreducens Biofilms: Controls and Constraints. ChemElectroChem, 2021, 8, 1697-1697.	1.7	1
141	Environmental Microbiology: evolution of your premier journal. Environmental Microbiology, 2012, 14, 2617-2619.	1.8	0
142	Resolving micron-scale heterogeneity in porewater Î′34SH2S by combining films for in-situ sulfide capture and secondary ion mass spectrometry. Marine Chemistry, 2020, 223, 103810.	0.9	0
143	Physiological, genomic, and sulfur isotopic characterization of methanol metabolism by Desulfovibrio carbinolicus. PLoS ONE, 2021, 16, e0245069.	1.1	0
144	Exploring Space via Astromycology: A Report on the CIFAR Programs <i>Earth 4D</i> and <i>Fungal Kingdom</i> Inaugural Joint Meeting. Astrobiology, 2022, , .	1.5	0