
## Dipayan Sarkar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4968826/publications.pdf Version: 2024-02-01



ΠΙΔΑΥΛΝ ΚΑΡΚΑΡ

| #  | Article                                                                                                                                                                                                                                                                    | IF                | CITATIONS      |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|
| 1  | Fermentation-based biotransformation of bioactive phenolics and volatile compounds from cashew apple juice by select lactic acid bacteria. Process Biochemistry, 2017, 59, 141-149.                                                                                        | 1.8               | 144            |
| 2  | Mechanisms underlying the antihypertensive effects of garlic bioactives. Nutrition Research, 2014, 34, 106-115.                                                                                                                                                            | 1.3               | 115            |
| 3  | Growth and enzymatic activity of maize ( <i>Zea mays</i> L) plant: Solution culture test for copper dioxide nano particles. Journal of Plant Nutrition, 2016, 39, 99-115.                                                                                                  | 0.9               | 87             |
| 4  | Metabolic Stimulation of Plant Phenolics for Food Preservation and Health. Annual Review of Food<br>Science and Technology, 2014, 5, 395-413.                                                                                                                              | 5.1               | 60             |
| 5  | Phenolicâ€Linked Biochemical Rationale for the Antiâ€Diabetic Properties of <i>Swertia chirayita</i> (Roxb. ex Flem.) Karst Phytotherapy Research, 2013, 27, 227-235.                                                                                                      | 2.8               | 57             |
| 6  | Evaluation of phenolic-linked bioactives of camu-camu ( Myrciaria dubia Mc. Vaugh) for<br>antihyperglycemia, antihypertension, antimicrobial properties and cellular rejuvenation. Food<br>Research International, 2015, 77, 194-203.                                      | 2.9               | 52             |
| 7  | Phenolic Composition and Evaluation of the Antimicrobial Activity of Free and Bound Phenolic<br>Fractions from a Peruvian Purple Corn ( <i>Zea mays</i> L.) Accession. Journal of Food Science, 2017,<br>82, 2968-2976.                                                    | 1.5               | 44             |
| 8  | Improving anti-hyperglycemic and anti-hypertensive properties of camu-camu (Myriciaria dubia Mc.) Tj ETQq0 0 (                                                                                                                                                             | Ο rgBT /Ον<br>1.8 | erlgck 10 Tf : |
| 9  | Phenolic linked anti-hyperglycemic bioactives of barley (Hordeum vulgare L.) cultivars as nutraceuticals targeting type 2 diabetes. Industrial Crops and Products, 2017, 107, 509-517.                                                                                     | 2.5               | 36             |
| 10 | Phenolic bioactives and associated antioxidant and anti-hyperglycemic functions of select species of<br>Apiaceae family targeting for type 2 diabetes relevant nutraceuticals. Industrial Crops and Products,<br>2017, 107, 518-525.                                       | 2.5               | 33             |
| 11 | Improving phenolic bioactive-linked anti-hyperglycemic functions of dark germinated barley sprouts<br>(Hordeum vulgare L.) using seed elicitation strategy. Journal of Food Science and Technology, 2017, 54,<br>3666-3678.                                                | 1.4               | 33             |
| 12 | Dietary functional benefits of Bartlett and Starkrimson pears for potential management of<br>hyperglycemia, hypertension and ulcer bacteria Helicobacter pylori while supporting beneficial<br>probiotic bacterial response. Food Research International, 2015, 69, 80-90. | 2.9               | 30             |
| 13 | Varietal Influences on Antihyperglycemia Properties of Freshly Harvested Apples Using <i>In<br/>Vitro</i> Assay Models. Journal of Medicinal Food, 2010, 13, 1313-1323.                                                                                                    | 0.8               | 27             |
| 14 | Food Diversity and Indigenous Food Systems to Combat Diet-Linked Chronic Diseases. Current Developments in Nutrition, 2020, 4, 3-11.                                                                                                                                       | 0.1               | 26             |
| 15 | Cold Acclimation Responses of Three Cool-season Turfgrasses and the Role of Proline-associated<br>Pentose Phosphate Pathway. Journal of the American Society for Horticultural Science, 2009, 134,<br>210-220.                                                             | 0.5               | 26             |
| 16 | The role of proline-associated pentose phosphate pathway in cool-season turfgrasses after UV-B<br>exposure. Environmental and Experimental Botany, 2011, 70, 251-258.                                                                                                      | 2.0               | 24             |
| 17 | Evaluation of phenolic antioxidant-linked in vitro bioactivity of Peruvian corn (Zea mays L.) diversity targeting for potential management of hyperglycemia and obesity. Journal of Food Science and Technology, 2019, 56, 2909-2924.                                      | 1.4               | 22             |
| 18 | Evaluation of phenolic bioactive-linked functionality of blackberry cultivars targeting dietary<br>management of early stages type-2 diabetes using in vitro models. Scientia Horticulturae, 2016, 212,<br>193-202.                                                        | 1.7               | 17             |

DIPAYAN SARKAR

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | In vitro screening and evaluation of phenolic antioxidant-linked anti-hyperglycemic functions of rabbit-eye blueberry (Vaccinium ashei) cultivars. Journal of Berry Research, 2017, 7, 163-177.                                | 0.7 | 17        |
| 20 | Improved resilience and metabolic response of transplanted blackberry plugs using chitosan oligosaccharide elicitor treatment. Canadian Journal of Plant Science, 2018, 98, 717-731.                                           | 0.3 | 16        |
| 21 | Clonal response to cold tolerance in creeping bentgrass and role of proline-associated pentose phosphate pathway. Bioresource Technology, 2009, 100, 5332-5339.                                                                | 4.8 | 15        |
| 22 | Apple and Blueberry Synergies for Designing Bioactive Ingredients for the Management of Early Stages of Type 2 Diabetes. Journal of Food Quality, 2016, 39, 370-382.                                                           | 1.4 | 15        |
| 23 | Phenolic Bioactives From Plant-Based Foods for Glycemic Control. Frontiers in Endocrinology, 2021, 12, 727503.                                                                                                                 | 1.5 | 15        |
| 24 | Type 2 Diabetes Relevant Bioactive Potential of Freshly Harvested and Long-Term Stored Pears<br>Using <i>in vitro</i> Assay Models. Journal of Food Biochemistry, 2013, 37, 677-686.                                           | 1.2 | 14        |
| 25 | Ethnic food perspective of North Dakota Common Emmer Wheat and relevance for health benefits targeting type 2 diabetes. Journal of Ethnic Foods, 2018, 5, 66-74.                                                               | 0.8 | 14        |
| 26 | Metabolic stimulation of phenolic biosynthesis and antioxidant enzyme response in dark germinated<br>barley (Hordeum vulgare L.) sprouts using bioprocessed elicitors. Food Science and Biotechnology,<br>2019, 28, 1093-1106. | 1.2 | 13        |
| 27 | Beneficial lactic acid bacteria based bioprocessing of cashew apple juice for targeting antioxidant<br>nutraceutical inhibitors as relevant antidotes to type 2 diabetes. Process Biochemistry, 2019, 82, 40-50.               | 1.8 | 12        |
| 28 | Initial screening studies on potential of high phenolic-linked plant clonal systems for nitrate removal<br>in cold latitudes. Journal of Soils and Sediments, 2010, 10, 923-932.                                               | 1.5 | 11        |
| 29 | Phenolic bioactives from developmental stages of highbush blueberry ( <i>Vaccinium corymbosum</i> )<br>for hyperglycemia management using in vitro models. Canadian Journal of Plant Science, 2015, 95,<br>653-662.            | 0.3 | 10        |
| 30 | Phenolic antioxidant-linked anti-hyperglycemic properties of rye cultivars grown under conventional and organic production systems. Journal of Cereal Science, 2017, 76, 108-115.                                              | 1.8 | 10        |
| 31 | Lactic acid bacteria based fermentation strategy to improve phenolic bioactive-linked functional qualities of select chickpea (Cicer arietinum L.) varieties. NFS Journal, 2022, 27, 36-46.                                    | 1.9 | 10        |
| 32 | Improving salinity resilience in <i>Swertia chirayita</i> clonal line with <i>Lactobacillus<br/>plantarum</i> . Canadian Journal of Plant Science, 2016, 96, 117-127.                                                          | 0.3 | 9         |
| 33 | Natural preservatives for superficial scald reduction and enhancement of protective phenolic-linked antioxidant responses in apple during post-harvest storage. Journal of Food Science and Technology, 2018, 55, 1767-1780.   | 1.4 | 9         |
| 34 | Evaluation of phenolic bioactive-linked anti-hyperglycemic and Helicobacter pylori inhibitory<br>activities of Asian Basil (Ocimum spp.) varieties. Journal of Herbal Medicine, 2020, 20, 100310.                              | 1.0 | 9         |
| 35 | Improving phenolic bioactive-linked functional qualities of traditional cereal-based fermented food<br>(Ogi) of Nigeria using compatible food synergies with underutilized edible plants. NFS Journal, 2022,<br>27, 1-12.      | 1.9 | 9         |
| 36 | Antioxidant Enzyme Response of Creeping Bentgrass Clonal Lines with Marine Peptide and Chitosan<br>Oligosaccharide. Agronomy Journal, 2010, 102, 981-989.                                                                      | 0.9 | 8         |

| #  | Article                                                                                                                                                                                                                                         | IF                 | CITATIONS          |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|
| 37 | INFLUENCE OF VARIETAL AND pH VARIATION ON ANTIHYPERGLYCEMIA AND ANTIHYPERTENSION PROPERTIES<br>OF LONG-TERM STORED APPLES USING IN VITRO ASSAY MODELS. Journal of Food Biochemistry, 2012, 36,<br>479-493.                                      | 1.2                | 8                  |
| 38 | Phenolics-Linked Antioxidant and Anti-hyperglycemic Properties of Edible Roselle (Hibiscus sabdariffa) Tj ETQq0<br>Systems, 2022, 6, .                                                                                                          | 0 0 rgBT /0<br>1.8 | Overlock 10 T<br>8 |
| 39 | Elicitation of Stress-Induced Phenolic Metabolites for Antimicrobial Applications against Foodborne<br>Human Bacterial Pathogens. Antibiotics, 2021, 10, 109.                                                                                   | 1.5                | 7                  |
| 40 | Improved Salinity Resilience in Black Bean by Seed Elicitation Using Organic Compounds. Agronomy<br>Journal, 2017, 109, 1991-2003.                                                                                                              | 0.9                | 6                  |
| 41 | Bioactive vegetables integrated into ethnic "Three Sisters Crops―garden targeting foods for type 2<br>diabetes-associated health disparities of American Indian communities. Journal of Ethnic Foods, 2017, 4,<br>163-171.                      | 0.8                | 5                  |
| 42 | Improving Health Targeted Food Quality of Blackberry: Pear Fruit Synergy Using Lactic Acid Bacterial Fermentation. Frontiers in Sustainable Food Systems, 2021, 5, .                                                                            | 1.8                | 5                  |
| 43 | Improving Phenolic Bioactive-Linked Functional Qualities of Sweet Potatoes Using Beneficial Lactic<br>Acid Bacteria-Based Biotransformation Strategy. Horticulturae, 2021, 7, 367.                                                              | 1.2                | 5                  |
| 44 | Functional Food Components for Preventing and Combating Type 2 Diabetes. ACS Symposium Series, 2012, , 345-374.                                                                                                                                 | 0.5                | 4                  |
| 45 | Human Health-Relevant Bioactives and Associated Functionalities of Herbs in the Lamiaceae Family. , 2019, , 115-131.                                                                                                                            |                    | 4                  |
| 46 | Evaluation of phenolic-linked anti-hyperglycemic properties of tropical Brazilian fruits for potential management of early stages Type 2 diabetes. Fruits, 2018, 73, 273-282.                                                                   | 0.3                | 4                  |
| 47 | Functional Foods and Biotechnology. , 0, , .                                                                                                                                                                                                    |                    | 4                  |
| 48 | Improving antioxidant and antiâ€hyperglycemic activity in cereal and appleâ€based food formulations<br>using bioactive ingredients from apple peel. Journal of Food Processing and Preservation, 2020, 44,<br>e14609.                           | 0.9                | 3                  |
| 49 | Improving Phenolic-Linked Antioxidant, Antihyperglycemic and Antibacterial Properties of Emmer and<br>Conventional Wheat Using Beneficial Lactic Acid Bacteria. Applied Microbiology, 2021, 1, 270-288.                                         | 0.7                | 3                  |
| 50 | Kefir Culture-Mediated Fermentation to Improve Phenolic-Linked Antioxidant, Anti-Hyperglycemic and<br>Human Gut Health Benefits in Sprouted Food Barley. Applied Microbiology, 2021, 1, 377-407.                                                | 0.7                | 3                  |
| 51 | Cold-Stress Response of Cool-Season Turfgrass. Books in Soils, Plants, and the Environment, 2007, , 507-530.                                                                                                                                    | 0.1                | 3                  |
| 52 | Improvement of Phenolic Antioxidant-linked Cancer Cell Cytotoxicity of Grape Cell Culture Elicited by<br>Chitosan and Chemical Treatments. Hortscience: A Publication of the American Society for<br>Hortcultural Science, 2017, 52, 1577-1584. | 0.5                | 2                  |
| 53 | Screening of blackberry cultivars for phenolic bioactive-linked antioxidant and anti-hyperglycemic properties. Acta Horticulturae, 2020, , 505-513.                                                                                             | 0.1                | 2                  |
| 54 | Using Biological Elicitation to Improve Type 2 Diabetes Targeted Food Quality of Stored Apple.<br>Frontiers in Sustainable Food Systems, 2021, 5, .                                                                                             | 1.8                | 2                  |

| #  | Article                                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Diabetes as a Disease of Aging, and the Role of Oxidative Stress. , 2014, , 61-69.                                                                                                                                                                                                             |     | 1         |
| 56 | Metabolic Mobilization Strategies to Enhance the Use of Plant-Based Dietary Antioxidants for the Management of Type 2 Diabetes. , 2014, , 289-296.                                                                                                                                             |     | 1         |
| 57 | Targeted Screening and Improvement of the Medicinal Properties of Oregano and Rhodiola with<br>Chitosan Oligosaccharide and Vitamin C Using in Vitro Assays for Hyperglycemia and Hypertension<br>Linked to Type 2 Diabetes. Journal of Herbs, Spices and Medicinal Plants, 2017, 23, 347-362. | 0.5 | 1         |
| 58 | Metabolic and Microbiome Innovations for Improving Phenolic Bioactives for Health. ACS Symposium Series, 2018, , 261-281.                                                                                                                                                                      | 0.5 | 1         |
| 59 | Phenolic bioactive-linked antioxidant, and anti-hyperglycemic functionalities of blackberry (Rubus sp.)<br>from two different maturation stages. Acta Horticulturae, 2020, , 495-504.                                                                                                          | 0.1 | 1         |
| 60 | Metabolic Modulation of Abiotic Stress Response for Improvement of Functional Ingredients in Food<br>Plants. , 2020, , 3-24.                                                                                                                                                                   |     | 1         |