
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4968338/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biological activity in the deep subsurface and the origin of heavy oil. Nature, 2003, 426, 344-352.	13.7	1,060
2	Marine microorganisms make a meal of oil. Nature Reviews Microbiology, 2006, 4, 173-182.	13.6	977
3	Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environmental Microbiology, 2006, 8, 732-740.	1.8	971
4	Accurate determination of microbial diversity from 454 pyrosequencing data. Nature Methods, 2009, 6, 639-641.	9.0	895
5	Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature, 2008, 451, 176-180.	13.7	638
6	Microbial Evolution, Diversity, and Ecology: A Decade of Ribosomal RNA Analysis of Uncultivated Microorganisms. Microbial Ecology, 1998, 35, 1-21.	1.4	599
7	Electricity generation from cysteine in a microbial fuel cell. Water Research, 2005, 39, 942-952.	5.3	449
8	Robust Hydrocarbon Degradation and Dynamics of Bacterial Communities during Nutrient-Enhanced Oil Spill Bioremediation. Applied and Environmental Microbiology, 2002, 68, 5537-5548.	1.4	429
9	A computational model for biofilm-based microbial fuel cells. Water Research, 2007, 41, 2921-2940.	5.3	381
10	Biodegradation of oil in uplifted basins prevented by deep-burial sterilization. Nature, 2001, 411, 1034-1037.	13.7	357
11	The controls on the composition of biodegraded oils in the deep subsurface—part 1: biodegradation rates in petroleum reservoirs. Organic Geochemistry, 2003, 34, 601-613.	0.9	319
12	Microbial landscapes: new paths to biofilm research. Nature Reviews Microbiology, 2007, 5, 76-81.	13.6	288
13	Thaumarchaeotes abundant in refinery nitrifying sludges express <i>amoA</i> but are not obligate autotrophic ammonia oxidizers. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16771-16776.	3.3	272
14	Microbial-silica interactions in Icelandic hot spring sinter: possible analogues for some Precambrian siliceous stromatolites. Sedimentology, 2001, 48, 415-433.	1.6	237
15	A single-chamber microbial fuel cell as a biosensor for wastewaters. Water Research, 2009, 43, 3145-3154.	5.3	236
16	Bacterial Community Dynamics and Hydrocarbon Degradation during a Field-Scale Evaluation of Bioremediation on a Mudflat Beach Contaminated with Buried Oil. Applied and Environmental Microbiology, 2004, 70, 2603-2613.	1.4	217
17	The quantitative significance of <i>Syntrophaceae</i> and syntrophic partnerships in methanogenic degradation of crude oil alkanes. Environmental Microbiology, 2011, 13, 2957-2975.	1.8	217
18	The controls on the composition of biodegraded oils in the deep subsurface: Part II—Geological controls on subsurface biodegradation fluxes and constraints on reservoir-fluid property prediction. AAPG Bulletin, 2006, 90, 921-938.	0.7	213

#	Article	IF	CITATIONS
19	Effect of temperature on the performance of microbial fuel cells. Fuel, 2010, 89, 3985-3994.	3.4	213
20	Thermodynamic constraints on methanogenic crude oil biodegradation. ISME Journal, 2008, 2, 442-452.	4.4	190
21	Neutral assembly of bacterial communities. FEMS Microbiology Ecology, 2007, 62, 171-180.	1.3	177
22	Bioremediation of petroleum hydrocarbon contaminants in marine habitats. Current Opinion in Biotechnology, 1999, 10, 234-239.	3.3	171
23	The microbiology of hydrocarbon degradation in subsurface petroleum reservoirs: perspectives and prospects. Research in Microbiology, 2003, 154, 321-328.	1.0	171
24	Microbial fuel cells meet with external resistance. Bioresource Technology, 2011, 102, 2758-2766.	4.8	171
25	Composition and diversity of ammonia-oxidising bacterial communities in wastewater treatment reactors of different design treating identical wastewater. FEMS Microbiology Ecology, 2003, 43, 195-206.	1.3	165
26	Effect of increasing anode surface area on the performance of a single chamber microbial fuel cell. Chemical Engineering Journal, 2010, 156, 40-48.	6.6	156
27	Application of Modified Carbon Anodes in Microbial Fuel Cells. Chemical Engineering Research and Design, 2007, 85, 481-488.	2.7	152
28	Modeling Taxa-Abundance Distributions in Microbial Communities using Environmental Sequence Data. Microbial Ecology, 2007, 53, 443-455.	1.4	151
29	A critical review of integration analysis of microbial electrosynthesis (MES) systems with waste biorefineries for the production of biofuel and chemical from reuse of CO 2. Renewable and Sustainable Energy Reviews, 2016, 56, 116-132.	8.2	147
30	Succession in the petroleum reservoir microbiome through an oil field production lifecycle. ISME Journal, 2017, 11, 2141-2154.	4.4	136
31	Complementary Microorganisms in Highly Corrosive Biofilms from an Offshore Oil Production Facility. Applied and Environmental Microbiology, 2016, 82, 2545-2554.	1.4	135
32	Kinetics of Perchlorate- and Chlorate-Respiring Bacteria. Applied and Environmental Microbiology, 2001, 67, 2499-2506.	1.4	134
33	Quantification of syntrophic acetateâ€oxidizing microbial communities in biogas processes. Environmental Microbiology Reports, 2011, 3, 500-505.	1.0	132
34	Life in the slow lane; biogeochemistry of biodegraded petroleum containing reservoirs and implications for energy recovery and carbon management. Frontiers in Microbiology, 2014, 5, 566.	1.5	132
35	Bioremediation: towards a credible technology. Microbiology (United Kingdom), 1998, 144, 599-608.	0.7	128
36	Isolation and characterization of a novel hydrocarbon-degrading, Gram-positive bacterium, isolated from intertidal beach sediment, and description of Planococcus alkanoclasticus sp. nov Journal of Applied Microbiology, 2001, 90, 237-247.	1.4	127

#	Article	IF	CITATIONS
37	The Family Nitrosomonadaceae. , 2014, , 901-918.		127
38	The effect of flavin electron shuttles in microbial fuel cells current production. Applied Microbiology and Biotechnology, 2010, 85, 1373-1381.	1.7	123
39	Electrobioremediation of oil spills. Water Research, 2017, 114, 351-370.	5.3	119
40	Massive dominance of <i>Epsilonproteobacteria</i> in formation waters from a Canadian oil sands reservoir containing severely biodegraded oil. Environmental Microbiology, 2012, 14, 387-404.	1.8	117
41	Phylogenetic relationships of filamentous sulfur bacteria (Thiothrix spp. and Eikelboom type 021N) Tj ETQq1 1 C Thiothrix unzii sp. nov., Thiothrix fructosivorans sp. nov. and Thiothrix defluvii sp. nov International Journal of Systematic and Evolutionary Microbiology, 1999, 49, 1817-1827.	0.784314 r 0.8	gBT /Overlock 112
42	Taxa-area relationships for microbes: the unsampled and the unseen. Ecology Letters, 2006, 9, 805-812.	3.0	112
43	Anaerobic biodegradation of crude oil under sulphate-reducing conditions leads to only modest enrichment of recognized sulphate-reducing taxa. International Biodeterioration and Biodegradation, 2013, 81, 105-113.	1.9	112
44	Preservation and diagenesis of hopanoids in Recent lacustrine sediments of Priest Pot, England. Organic Geochemistry, 1997, 26, 565-576.	0.9	108
45	Identification of novel bacterial lineages as active members of microbial populations in a freshwater sediment using a rapid RNA extraction procedure and RT-PCR. Microbiology (United Kingdom), 1999, 145, 1977-1987.	0.7	108
46	Linking genetic identity and function in communities of uncultured bacteria. Environmental Microbiology, 2001, 3, 481-492.	1.8	105
47	Methanogenic Degradation of Petroleum Hydrocarbons in Subsurface Environments. Advances in Applied Microbiology, 2010, 72, 137-161.	1.3	105
48	Environmental influence on the biohopanoid composition of recent sediments. Geochimica Et Cosmochimica Acta, 2000, 64, 2985-2992.	1.6	103
49	Evidence that crude oil alkane activation proceeds by different mechanisms under sulfate-reducing and methanogenic conditions. Geochimica Et Cosmochimica Acta, 2013, 109, 162-174.	1.6	98
50	Peer Reviewed: Theoretical Ecology for Engineering Biology. Environmental Science & Technology, 2003, 37, 64A-70A.	4.6	96
51	The controls on the composition of biodegraded oils in the deep subsurface – Part 3. The impact of microorganism distribution on petroleum geochemical gradients in biodegraded petroleum reservoirs. Organic Geochemistry, 2013, 56, 94-105.	0.9	93
52	What is the extent of prokaryotic diversity?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 2023-2037.	1.8	90
53	Life cycle, techno-economic and dynamic simulation assessment of bioelectrochemical systems: A case of formic acid synthesis. Bioresource Technology, 2018, 255, 39-49.	4.8	86
54	Biogenic methane production in formation waters from a large gas field in the North Sea. Extremophiles, 2009, 13, 511-519.	0.9	84

#	Article	IF	CITATIONS
55	Low-Dissolved-Oxygen Nitrifying Systems Exploit Ammonia-Oxidizing Bacteria with Unusually High Yields. Applied and Environmental Microbiology, 2011, 77, 7787-7796.	1.4	80
56	Microbial fuel cells with highly active aerobic biocathodes. Journal of Power Sources, 2016, 324, 8-16.	4.0	77
57	Use of Combined Microautoradiography and Fluorescence In Situ Hybridization To Determine Carbon Metabolism in Mixed Natural Communities of Uncultured Bacteria from the Genus Achromatium. Applied and Environmental Microbiology, 2000, 66, 4518-4522.	1.4	74
58	Anodes Stimulate Anaerobic Toluene Degradation via Sulfur Cycling in Marine Sediments. Applied and Environmental Microbiology, 2016, 82, 297-307.	1.4	74
59	Agreement between Theory and Measurement in Quantification of Ammonia-Oxidizing Bacteria. Applied and Environmental Microbiology, 2005, 71, 6325-6334.	1.4	73
60	Decreased heart rate variability in patients with cirrhosis relates to the presence and degree of hepatic encephalopathy. American Journal of Physiology - Renal Physiology, 2009, 296, G330-G338.	1.6	72
61	Correlations between in situ denitrification activity and nir-gene abundances in pristine and impacted prairie streams. Environmental Pollution, 2010, 158, 3225-3229.	3.7	72
62	Occurrence and activity of Archaea in aerated activated sludge wastewater treatment plants. Environmental Microbiology, 2002, 4, 158-168.	1.8	70
63	Effect of wastewater composition on archaeal population diversity. Water Research, 2005, 39, 1576-1584.	5.3	70
64	Damage to offshore production facilities by corrosive microbial biofilms. Applied Microbiology and Biotechnology, 2018, 102, 2525-2533.	1.7	70
65	Response of Methanogens in Arctic Sediments to Temperature and Methanogenic Substrate Availability. PLoS ONE, 2015, 10, e0129733.	1.1	69
66	Beyond the tip of the iceberg; a new view of the diversity of sulfite- and sulfate-reducing microorganisms. ISME Journal, 2018, 12, 2096-2099.	4.4	67
67	Modelling microbial fuel cells with suspended cells and added electron transfer mediator. Journal of Applied Electrochemistry, 2010, 40, 151-162.	1.5	66
68	Response of Archaeal Communities in Beach Sediments to Spilled Oil and Bioremediation. Applied and Environmental Microbiology, 2004, 70, 2614-2620.	1.4	61
69	Open circuit versus closed circuit enrichment of anodic biofilms in MFC: effect on performance and anodic communities. Applied Microbiology and Biotechnology, 2010, 87, 1699-1713.	1.7	59
70	Evaluation of hydrolysis and fermentation rates in microbial fuel cells. Applied Microbiology and Biotechnology, 2011, 90, 789-798.	1.7	59
71	Survival of <i>Desulfotomaculum</i> spores from estuarine sediments after serial autoclaving and high-temperature exposure. ISME Journal, 2015, 9, 922-933.	4.4	58
72	The effect of fungal decay (Agaricus bisporus) on wheat straw lignin using pyrolysis–GC–MS in the presence of tetramethylammonium hydroxide (TMAH). Journal of Analytical and Applied Pyrolysis, 2001, 60, 69-78.	2.6	56

#	Article	IF	CITATIONS
73	Early diagenesis of bacteriohopanoids in Recent sediments of Lake Pollen, Norway. Organic Geochemistry, 1998, 29, 1285-1295.	0.9	55
74	Comparative metagenomics of hydrocarbon and methane seeps of the Gulf of Mexico. Scientific Reports, 2017, 7, 16015.	1.6	52
75	The controls on the composition of biodegraded oils in the deep subsurface – Part 4. Destruction and production of high molecular weight non-hydrocarbon species and destruction of aromatic hydrocarbons during progressive in-reservoir biodegradation. Organic Geochemistry, 2017, 114, 57-80.	0.9	48
76	A multilevel sustainability analysis of zinc recovery from wastes. Resources, Conservation and Recycling, 2016, 113, 88-105.	5.3	47
77	Parameters influencing the development of highly conductive and efficient biofilm during microbial electrosynthesis: the importance of applied potential and inorganic carbon source. Npj Biofilms and Microbiomes, 2020, 6, 40.	2.9	45
78	Biodegradation and adsorption of crude oil hydrocarbons supported on "homoionic― montmorillonite clay minerals. Applied Clay Science, 2014, 87, 81-86.	2.6	44
79	Biodegradation, gas destruction and methane generation in deep subsurface petroleum reservoirs: an overview. Petroleum Geology Conference Proceedings, 2005, 6, 633-639.	0.7	43
80	The thermodynamic landscape of methanogenic PAH degradation. Microbial Biotechnology, 2009, 2, 566-574.	2.0	43
81	Kinetic parameters for nutrient enhanced crude oil biodegradation in intertidal marine sediments. Frontiers in Microbiology, 2014, 5, 160.	1.5	42
82	On the repeatability and reproducibility of experimental two-chambered microbial fuel cells. Fuel, 2009, 88, 1852-1857.	3.4	41
83	Volatile hydrocarbons inhibit methanogenic crude oil degradation. Frontiers in Microbiology, 2014, 5, 131.	1.5	41
84	An Evaluation of the Performance and Economics of Membranes and Separators in Single Chamber Microbial Fuel Cells Treating Domestic Wastewater. PLoS ONE, 2015, 10, e0136108.	1.1	41
85	Standard inocula preparations reduce the bacterial diversity and reliability of regulatory biodegradation tests. Environmental Science and Pollution Research, 2014, 21, 9511-9521.	2.7	40
86	Oil Sands and Heavy Oil: Origin and Exploitation. Elements, 2014, 10, 277-283.	0.5	39
87	Effects of soil improvement treatments on bacterial community structure and soil processes in an upland grassland soil. FEMS Microbiology Ecology, 2003, 46, 11-22.	1.3	38
88	Metabolites of an Oil Field Sulfide-Oxidizing, Nitrate-Reducing <i>Sulfurimonas</i> sp. Cause Severe Corrosion. Applied and Environmental Microbiology, 2019, 85, .	1.4	38
89	Acidophilic microbial communities associated with a natural, biodegraded hydrocarbon seepage. Journal of Applied Microbiology, 2006, 101, 290-299.	1.4	37
90	Zinc removal and recovery from industrial wastewater with a microbial fuel cell: Experimental investigation and theoretical prediction. Science of the Total Environment, 2021, 776, 145934.	3.9	36

#	Article	IF	CITATIONS
91	The metabolic pathways and environmental controls of hydrocarbon biodegradation in marine ecosystems. Frontiers in Microbiology, 2014, 5, 471.	1.5	35
92	Microbial Biotechnology 2020; microbiology of fossil fuel resources. Microbial Biotechnology, 2016, 9, 626-634.	2.0	34
93	Adaptation of sympatric Achromatium spp. to different redox conditions as a mechanism for coexistence of functionally similar sulphur bacteria. Environmental Microbiology, 2004, 6, 669-677.	1.8	32
94	A single chamber packed bed microbial fuel cell biosensor for measuring organic content of wastewater. Water Science and Technology, 2009, 60, 2879-2887.	1.2	32
95	Effect of Sludge Age on the Bacterial Diversity of Bench Scale Sequencing Batch Reactors. Environmental Science & Technology, 2009, 43, 2950-2956.	4.6	31
96	Extending the dynamic range of biochemical oxygen demand sensing with multi-stage microbial fuel cells. Environmental Science: Water Research and Technology, 2018, 4, 2029-2040.	1.2	31
97	Bridging spatially segregated redox zones with a microbial electrochemical snorkel triggers biogeochemical cycles in oil-contaminated River Tyne (UK) sediments. Water Research, 2017, 127, 11-21.	5.3	30
98	Microbial and Isotopic Evidence for Methane Cycling in Hydrocarbon-Containing Groundwater from the Pennsylvania Region. Frontiers in Microbiology, 2017, 8, 593.	1.5	30
99	Biofuel components change the ecology of bacterial volatile petroleum hydrocarbon degradation in aerobic sandy soil. Environmental Pollution, 2013, 173, 125-132.	3.7	29
100	Effect of acid activated clay minerals on biodegradation of crude oil hydrocarbons. International Biodeterioration and Biodegradation, 2014, 88, 185-191.	1.9	28
101	HIP1 propagates in cyanobacterial DNA via nucleotide substitutions but promotes excision at similar frequencies in Escherichia coli and Synechococcus PCC 7942. Molecular Microbiology, 1997, 24, 181-189.	1.2	27
102	Continuous Feed Microbial Fuel Cell Using An Air Cathode and A Disc Anode Stack for Wastewater Treatment. Energy & Fuels, 2009, 23, 5707-5716.	2.5	27
103	Contrasting Pathways for Anaerobic Methane Oxidation in Gulf of Mexico Cold Seep Sediments. MSystems, 2019, 4, .	1.7	27
104	Comparison of sulfideâ€oxidizing <i>Sulfurimonas</i> strains reveals a new mode of thiosulfate formation in subsurface environments. Environmental Microbiology, 2020, 22, 1784-1800.	1.8	27
105	Uncultured giant sulfur bacteria of the genus Achromatium. FEMS Microbiology Ecology, 2000, 33, 171-180.	1.3	26
106	Distribution of thermophilic endospores in a temperate estuary indicate that dispersal history structures sediment microbial communities. Environmental Microbiology, 2018, 20, 1134-1147.	1.8	25
107	Characterization of a carbofuran-degrading bacterium and investigation of the role of plasmids in catabolism of the insecticide carbofuran. Archives of Microbiology, 1992, 158, 302-308.	1.0	23
108	The biogeochemical cycling of methane in Ria de Vigo, NW Spain: Sediment processing and sea–air exchange. Journal of Marine Systems, 2007, 66, 258-271.	0.9	23

#	Article	IF	CITATIONS
109	Achromatium oxaliferum Understanding the Unmistakable. Advances in Microbial Ecology, 2000, , 1-40.	0.1	22
110	High Throughput Biodegradation-Screening Test To Prioritize and Evaluate Chemical Biodegradability. Environmental Science & Technology, 2017, 51, 7236-7244.	4.6	22
111	High Performing Gas Diffusion Biocathode for Microbial Fuel Cells Using Acidophilic Iron Oxidizing Bacteria. Frontiers in Energy Research, 2019, 7, .	1.2	22
112	Sediment cooling triggers germination and sulfate reduction by heatâ€resistant thermophilic sporeâ€forming bacteria. Environmental Microbiology, 2020, 22, 456-465.	1.8	20
113	The impact of sludge amendment on methanogen community structure in an upland soil. Applied Soil Ecology, 2005, 28, 147-162.	2.1	18
114	Detection of 4-Nitrophenol, a Model Toxic Compound, Using Multi-Stage Microbial Fuel Cells. Frontiers in Environmental Science, 2020, 8, .	1.5	18
115	A new model for the formation of microbial polygons in a coastal sabkha setting. Depositional Record, 2017, 3, 201-208.	0.8	17
116	Re-evaluation of dioxygenase gene phylogeny for the development and validation of a quantitative assay for environmental aromatic hydrocarbon degraders. FEMS Microbiology Ecology, 2015, 91, .	1.3	16
117	An underappreciated DIET for anaerobic petroleum hydrocarbonâ€degrading microbial communities. Microbial Biotechnology, 2021, 14, 2-7.	2.0	16
118	Microbial community analysis of three hydrocarbon reservoir cores provides valuable insights for the assessment of reservoir souring potential. International Biodeterioration and Biodegradation, 2018, 126, 177-188.	1.9	15
119	The biogeographical distribution of closely related freshwater sediment bacteria is determined by environmental selection. ISME Journal, 2007, 1, 596-605.	4.4	14
120	Biodegradation of crude oil saturated fraction supported on clays. Biodegradation, 2014, 25, 153-165.	1.5	14
121	Methods for Recovery of Microorganisms and Intact Microbial Polar Lipids from Oilâ^'Water Mixtures: Laboratory Experiments and Natural Well-Head Fluids. Analytical Chemistry, 2009, 81, 4130-4136.	3.2	13
122	A microbial fuel cell sensor for unambiguous measurement of organic loading and definitive identification of toxic influents. Environmental Science: Water Research and Technology, 2020, 6, 612-621.	1.2	13
123	Microbial Community Composition in Crude Oils and Asphalts from the Kurdistan Region of Iraq. Geomicrobiology Journal, 2020, 37, 635-652.	1.0	13
124	How to access and exploit natural resources sustainably: petroleum biotechnology. Microbial Biotechnology, 2017, 10, 1206-1211.	2.0	12
125	Anomalous energy yields in thermodynamic calculations: importance of accounting for pH-dependent organic acid speciation. ISME Journal, 2010, 4, 463-464.	4.4	11
126	Nitrification in hybrid bioreactors treating simulated domestic wastewater. Journal of Applied Microbiology, 2013, 115, 621-630.	1.4	11

#	Article	IF	CITATIONS
127	Improving PCR efficiency for accurate quantification of 16S rRNA genes. Journal of Microbiological Methods, 2013, 93, 148-152.	0.7	11
128	Evaluation of porous carbon felt as an aerobic biocathode support in terms of hydrogen peroxide. Journal of Power Sources, 2017, 356, 459-466.	4.0	11
129	Ecology and metagenomics of soil microorganisms. FEMS Microbiology Ecology, 2011, 78, 1-2.	1.3	10
130	A preliminary and qualitative study of resource ratio theory to nitrifying labâ€scale bioreactors. Microbial Biotechnology, 2015, 8, 590-603.	2.0	10
131	Beyond N and P: The impact of Ni on crude oil biodegradation. Chemosphere, 2019, 237, 124545.	4.2	9
132	Anaerobic microbial communities and their potential for bioenergy production in heavily biodegraded petroleum reservoirs. Environmental Microbiology, 2020, 22, 3049-3065.	1.8	9
133	Anode potential selection for sulfide removal in contaminated marine sediments. Journal of Hazardous Materials, 2018, 360, 498-503.	6.5	8
134	Enhanced bio-production from CO ₂ by microbial electrosynthesis (MES) with continuous operational mode. Faraday Discussions, 2021, 230, 344-359.	1.6	8
135	No re-calibration required? Stability of a bioelectrochemical sensor for biodegradable organic matter over 800 days. Biosensors and Bioelectronics, 2021, 190, 113392.	5.3	8
136	Biodegradation and adsorption of C1- and C2-phenanthrenes and C1- and C2-dibenzothiophenes in the presence of clay minerals: effect on forensic diagnostic ratios. Biodegradation, 2014, 25, 515-527.	1.5	7
137	Correlation of seasonal nitrification failure and ammonia-oxidizing community dynamics in a wastewater treatment plant treating water from a saline thermal spa. Annals of Microbiology, 2014, 64, 1671-1682.	1.1	7
138	Syntrophic Hydrocarbon Degradation in a Decommissioned Off-Shore Subsea Oil Storage Structure. Microorganisms, 2021, 9, 356.	1.6	7
139	Compositional changes of crude oil SARA fractions due to biodegradation and adsorption on colloidal support such as clays using latroscan. Environmental Science and Pollution Research, 2013, 20, 6445-6454.	2.7	6
140	Recovery and Analysis of Ribosomal RNA Sequences from the Environment. , 1999, , 139-174.		4
141	Development of a Rapid Assay for Determining the Relative Abundance of Bacteria. Applied and Environmental Microbiology, 2005, 71, 8481-8490.	1.4	4
142	Methanogenic crude oil-degrading microbial consortia are not universally abundant in anoxic environments. International Biodeterioration and Biodegradation, 2020, 155, 105085.	1.9	4
143	Identity and hydrocarbon degradation activity of enriched microorganisms from natural oil and asphalt seeps in the Kurdistan Region of Iraq (KRI). Biodegradation, 2021, 32, 251-271.	1.5	4
144	Composition and diversity of ammonia-oxidising bacterial communities in wastewater treatment reactors of different design treating identical wastewater. , 0, .		4

#	Article	IF	CITATIONS
145	Minerals, mats, pearls and veils: themes and variations in giant sulfur bacteria. , 0, , 35-70.		3
146	Organic carbon in sediments. Nature, 1995, 373, 293-293.	13.7	3
147	An Unexpectedly Broad Thermal and Salinity-Tolerant Estuarine Methanogen Community. Microorganisms, 2020, 8, 1467.	1.6	3
148	How Specific Microbial Communities Benefit the Oil Industry: Dynamics of Alcanivorax spp. in Oil-Contaminated Intertidal Beach Sediments Undergoing Bioremediation. , 2010, , 199-209.		3
149	A stable isotope titration method to determine the contribution of acetate disproportionation and carbon dioxide reduction to methanogenesis. Journal of Microbiological Methods, 2006, 65, 180-186.	0.7	2
150	Whole genome microarray analysis of the expression profile of Escherichia coli in response to exposure to para-nitrophenol. Advances in Experimental Biology, 2008, 2, 221-248.	0.1	2
151	The Family Achromatiaceae. , 2014, , 1-14.		2
152	MIxS-HCR: a MIxS extension defining a minimal information standard for sequence data from environments pertaining to hydrocarbon resources. Standards in Genomic Sciences, 2016, 11, 78.	1.5	2
153	Response of the soil bacterial community to perturbation. , 2005, , 273-292.		1
154	Effect of modified montmorillonites on the biodegradation and adsorption of biomarkers such as hopanes, steranes and diasteranes. Environmental Science and Pollution Research, 2013, 20, 8881-8889.	2.7	1
155	Protocols for Investigating the Microbial Communities of Oil and Gas Reservoirs. Springer Protocols, 2016, , 65-109.	0.1	1