List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4968070/publications.pdf Version: 2024-02-01

DIEDDE RÃOCHIN

#	Article	IF	CITATIONS
1	Synergistic template-free synthesis of dsDNA by Thermococcus nautili primase PolpTN2, DNA polymerase PolB, and pTN2 helicase. Extremophiles, 2015, 19, 69-76.	2.3	10
2	Structural basis for a novel mechanism of <scp>DNA</scp> bridging and alignment in eukaryotic <scp>DSB DNA</scp> repair. EMBO Journal, 2015, 34, 1126-1142.	7.8	21
3	A highly divergent archaeo-eukaryotic primase from the <i>Thermococcus nautilus</i> plasmid, pTN2. Nucleic Acids Research, 2014, 42, 3707-3719.	14.5	25
4	The SF1 helicase encoded by the archaeal plasmid pTN2 of Thermococcus nautili. Extremophiles, 2014, 18, 779-787.	2.3	3
5	Crystal structure and functional mapping of human ASMT, the last enzyme of the melatonin synthesis pathway. Journal of Pineal Research, 2013, 54, 46-57.	7.4	51
6	Structures of Intermediates along the Catalytic Cycle of Terminal Deoxynucleotidyltransferase: Dynamical Aspects of the Two-Metal Ion Mechanism. Journal of Molecular Biology, 2013, 425, 4334-4352.	4.2	41
7	Enhanced Basophil Reactivities during Severe Malaria and Their Relationship with the Plasmodium falciparum Histamine-Releasing Factor Translationally Controlled Tumor Protein. Infection and Immunity, 2012, 80, 2963-2970.	2.2	23
8	Production of soluble, active acetyl serotonin methyl transferase in Leishmania tarentolae. Protein Expression and Purification, 2011, 75, 114-118.	1.3	13
9	Identification of Conserved Amino Acid Residues of the Salmonella σ S Chaperone Crl Involved in Crl-σ S Interactions. Journal of Bacteriology, 2010, 192, 1075-1087.	2.2	16
10	Time- and temperature-dependent acetylation of the chemokine RANTES produced in recombinant Escherichia coli. Protein Expression and Purification, 2007, 55, 9-16.	1.3	12
11	Interaction between a Type-II Dockerin Domain and a Type-II Cohesin Domain fromClostridium thermocellumCellulosome. Bioscience, Biotechnology and Biochemistry, 2004, 68, 924-926.	1.3	22
12	Cohesin-Dockerin Interactions within and between Clostridium josui and Clostridium thermocellum. Journal of Biological Chemistry, 2004, 279, 9867-9874.	3.4	49
13	Genes Involved in the Degradation of Ether Fuels by Bacteria of the Mycobacterium/Rhodococcus Group. Oil and Gas Science and Technology, 2003, 58, 489-495.	1.4	22
14	Mapping by Site-Directed Mutagenesis of the Region Responsible for Cohesinâ^'Dockerin Interaction on the Surface of the Seventh Cohesin Domain ofClostridium thermocellumCipAâ€. Biochemistry, 2002, 41, 2115-2119.	2.5	42
15	Duplicated Dockerin Subdomains ofClostridium thermocellumEndoglucanase CelD Bind to a Cohesin Domain of the Scaffolding Protein CipA with Distinct Thermodynamic Parameters and a Negative Cooperativityâ€. Biochemistry, 2002, 41, 2106-2114.	2.5	70
16	Atomic (0.94 Ã) resolution structure of an inverting glycosidase in complex with substrate. Journal of Molecular Biology, 2002, 316, 1061-1069.	4.2	132
17	1H, 13C, 15N NMR sequence-specific resonance assignment of a Clostridium thermocellum type II cohesin module. Journal of Biomolecular NMR, 2002, 23, 73-74.	2.8	12
18	Cloning of a Genetically Unstable Cytochrome P-450 Gene Cluster Involved in Degradation of the Pollutant Ethyl tert -Butyl Ether by Rhodococcus ruber. Journal of Bacteriology, 2001, 183, 6551-6557.	2.2	91

#	Article	IF	CITATIONS
19	Hybrid enzymes. Current Opinion in Biotechnology, 1999, 10, 336-340.	6.6	32
20	Distinct Affinity of Binding Sites for S-Layer Homologous Domains in <i>Clostridium thermocellum</i> and <i>Bacillus anthracis</i> Cell Envelopes. Journal of Bacteriology, 1999, 181, 2455-2458.	2.2	73
21	Cellulase and hemicellulase genes ofClostridium thermocellumfrom five independent collections contain few overlaps and are widely scattered across the chromosome. FEMS Microbiology Letters, 1998, 161, 209-215.	1.8	35
22	Comparison of two scaffolding polypeptides for the integration of different proteins in synthetic complexes derived from the Clostridium thermocellum cellulosome. Enzyme and Microbial Technology, 1998, 22, 588-593.	3.2	5
23	The cellulosome of <i>Clostridium thermocellum</i> . Biochemical Society Transactions, 1998, 26, 178-184.	3.4	59
24	Cellulase and hemicellulase genes of Clostridium thermocellum from five independent collections contain few overlaps and are widely scattered across the chromosome. FEMS Microbiology Letters, 1998, 161, 209-215.	1.8	3
25	Interaction between Clostridium thermocellum endoglucanase CelD and polypeptides derived from the cellulosome-integrating protein CipA: stoichiometry and cellulolytic activity of the complexes. Biochemical Journal, 1997, 326, 617-624.	3.7	49
26	Synergism between the cellulosome-integrating protein CipA and endoglucanase CelD of Clostridium thermocellum. Journal of Biotechnology, 1997, 57, 39-47.	3.8	15
27	The crystal structure of a type I cohesin domain at 1.7 Ã resolution 1 1Edited by D. Rees. Journal of Molecular Biology, 1997, 273, 701-713.	4.2	92
28	Characterization and subcellular localization of the Clostridium thermocellum scaffoldin dockerin binding protein SdbA. Journal of Bacteriology, 1997, 179, 2519-2523.	2.2	87
29	V. Functions of S-layers. FEMS Microbiology Reviews, 1997, 20, 99-149.	8.6	102
30	The Cellulosome: An Exocellular, Multiprotein Complex Specialized in Cellulose Degradation. Critical Reviews in Biochemistry and Molecular Biology, 1996, 31, 201-236.	5.2	193
31	A new type of cohesin domain that specifically binds the dockerin domain of the Clostridium thermocellum cellulosome-integrating protein CipA. Journal of Bacteriology, 1996, 178, 3077-3084.	2.2	137
32	Crystallization of a family 8 cellulase from Clostridium thermocellum. Proteins: Structure, Function and Bioinformatics, 1996, 25, 134-136.	2.6	1
33	Subcloning of a dna fragment encoding a single cohesin domain of the <i>clostridium thermocellum</i> cellulosomeâ€integrating protein cipA: Purification, crystallization, and preliminary diffraction analysis of the encoded polypeptide. Protein Science, 1996, 5, 1192-1194.	7.6	6
34	Crystallization of a family 8 cellulase from Clostridium thermocellum. Proteins: Structure, Function and Bioinformatics, 1996, 25, 134-136.	2.6	5
35	A common protein fold and similar active site in two distinct families of β-glycanases. Nature Structural Biology, 1995, 2, 569-576.	9.7	149
36	OlpB, a new outer layer protein of Clostridium thermocellum, and binding of its S-layer-like domains to components of the cell envelope. Journal of Bacteriology, 1995, 177, 2451-2459.	2.2	164

#	Article	IF	CITATIONS
37	Structural and Functional Analysis of the Metal-binding Sites of Clostridium thermocellum Endoglucanase CelD. Journal of Biological Chemistry, 1995, 270, 9757-9762.	3.4	45
38	Multiple crystal forms of endoglucanase CelD: Signal peptide residues modulate lattice formation. Journal of Molecular Biology, 1995, 248, 225-232.	4.2	7
39	Subcellular localization of Clostridium thermocellum ORF3p, a protein carrying a receptor for the docking sequence borne by the catalytic components of the cellulosome. Journal of Bacteriology, 1994, 176, 2828-2834.	2.2	83
40	Recognition specificity of the duplicated segments present in Clostridium thermocellum endoglucanase CelD and in the cellulosome-integrating protein CipA. Journal of Bacteriology, 1994, 176, 2822-2827.	2.2	111
41	The biological degradation of cellulose. FEMS Microbiology Reviews, 1994, 13, 25-58.	8.6	1,137
42	Crystallization and Preliminary Diffraction Analysis of the Catalytic Domain of Xylanase Z from Clostridium thermocellum. Journal of Molecular Biology, 1994, 235, 1348-1350.	4.2	11
43	The biological degradation of cellulose. FEMS Microbiology Reviews, 1994, 13, 25-58.	8.6	33
44	Properties conferred on Clostridium thermocellum endoglucanase CelC by grafting the duplicated segment of endoglucanase CelD. Protein Engineering, Design and Selection, 1993, 6, 947-952.	2.1	73
45	Nucleotide sequence of the celC gene of Clostridium thermocellum and characterization of its product, endoglucanase CelC. Journal of Bacteriology, 1993, 175, 3353-3360.	2.2	41
46	Organization of a Clostridium thermocellum gene cluster encoding the cellulosomal scaffolding protein CipA and a protein possibly involved in attachment of the cellulosome to the cell surface. Journal of Bacteriology, 1993, 175, 1891-1899.	2.2	152
47	Genes and Proteins Involved in Cellulose and Xylan Degradation by Clostridium thermocellum. Brock/Springer Series in Contemporary Bioscience, 1993, , 412-422.	0.3	2
48	Site-induced mutagenesis of conserved residues of Clostridium Thermocellum endoglucanase celc. Biochemical and Biophysical Research Communications, 1992, 189, 807-812.	2.1	42
49	Involvement of separate domains of the cellulosomal protein S1 ofClostridium thermocellumin binding to cellulose and in anchoring of catalytic subunits to the cellulosome. FEBS Letters, 1992, 304, 89-92.	2.8	71
50	Three-dimensional structure of a thermostable bacterial cellulase. Nature, 1992, 357, 89-91.	27.8	245
51	Cellulose degradation by <i>Clostridium thermocellum</i> : From manure to molecular biology. FEMS Microbiology Letters, 1992, 100, 523-528.	1.8	34
52	Stereoselective hydrolysis catalyzed by related beta-1,4-glucanases and beta-1,4-xylanases Journal of Biological Chemistry, 1992, 267, 12559-12561.	3.4	193
53	Site-directed mutagenesis of essential carboxylic residues in Clostridium thermocellum endoglucanase CelD Journal of Biological Chemistry, 1992, 267, 4472-4478.	3.4	65
54	Cellulose degradation by Clostridium thermocellum: From manure to molecular biology. FEMS Microbiology Letters, 1992, 100, 523-528.	1.8	29

#	Article	IF	CITATIONS
55	Cloning of a Clostridium thermocellum DNA fragment encoding polypeptides that bind the catalytic components of the cellulosome. FEMS Microbiology Letters, 1992, 94, 165-170.	1.8	31
56	Site-directed mutagenesis of essential carboxylic residues in Clostridium thermocellum endoglucanase CelD. Journal of Biological Chemistry, 1992, 267, 4472-8.	3.4	52
57	Nucleotide sequence of the cellulase gene celF of Clostridium thermocellum. Research in Microbiology, 1991, 142, 927-936.	2.1	50
58	High activity of inclusion bodies formed in Escherichia coli overproducing Clostridium thermocellum endoglucanase D. FEBS Letters, 1991, 282, 205-208.	2.8	102
59	Interaction of the duplicated segment carried byClostridium thermocellumcellulases with cellulosome components. FEBS Letters, 1991, 291, 185-188.	2.8	152
60	Transcription of Clostridium thermocellum endoglucanase genes celF and celD. Journal of Bacteriology, 1991, 173, 80-85.	2.2	62
61	Identification of a histidyl residue in the active center of endoglucanase D from Clostridium thermocellum. Journal of Biological Chemistry, 1991, 266, 10313-10318.	3.4	46
62	Identification of a histidyl residue in the active center of endoglucanase D from Clostridium thermocellum. Journal of Biological Chemistry, 1991, 266, 10313-8.	3.4	44
63	Calcium-binding affinity and calcium-enhanced activity of <i>Clostridium thermocellum</i> endoglucanase D. Biochemical Journal, 1990, 265, 261-265.	3.7	117
64	Nucleotide sequence and deletion analysis of the cellulase-encoding gene celH of Clostridium thermocellum. Gene, 1990, 89, 61-67.	2.2	85
65	Molecular Biology of Cellulose Degradation. Annual Review of Microbiology, 1990, 44, 219-248.	7.3	522
66	Enhanced Cellulose Fermentation by an Asporogenous and Ethanol-Tolerant Mutant of <i>Clostridium thermocellum</i> . Applied and Environmental Microbiology, 1989, 55, 207-211.	3.1	81
67	A catalogue of Clostridium thermocellum endoglucanase, β-glucosidase and xylanase genes cloned in Escherichia coli. FEMS Microbiology Letters, 1988, 51, 231-236.	1.8	100
68	Molecular cloning of a gene for a thermostable β-glucosidase from Clostridium thermocellum into Escherichia coli. Enzyme and Microbial Technology, 1988, 10, 9-13.	3.2	24
69	Crystalline endoglucanase D of Clostridium thermocellum overproduced in Escherichia coli. Methods in Enzymology, 1988, 160, 355-362.	1.0	8
70	Nucleotide sequence and deletion analysis of the xylanase gene (xynZ) of Clostridium thermocellum. Journal of Bacteriology, 1988, 170, 4582-4588.	2.2	202
71	Purification of Clostridium thermocellum xylanase Z expressed in Escherichia coli and identification of the corresponding product in the culture medium of C. thermocellum. Journal of Bacteriology, 1988, 170, 4576-4581.	2.2	95
72	Expression in <i>Escherichia coli</i> of the <i>Cellulomonas fimi</i> Structural Gene for Endoglucanase B. Applied and Environmental Microbiology, 1988, 54, 518-523.	3.1	44

#	Article	IF	CITATIONS
73	Cloning of Cellulase Genes. Critical Reviews in Biotechnology, 1987, 6, 129-162.	9.0	37
74	Isolation, Crystallization and Properties of a New Cellulase of Clostridium thermocellum Overproduced in Escherichia coli. Nature Biotechnology, 1986, 4, 896-900.	17.5	50
75	Purification and properties of the endoglucanase C of Clostridium thermocellum produced in Escherichia coli. Biochimie, 1986, 68, 687-695.	2.6	74
76	Crystallization and preliminary X-ray diffraction study of an endoglucanase from Clostridium thermocellum. Journal of Molecular Biology, 1986, 189, 249-250.	4.2	22
77	Mapping of mRNA encoding endoglucanase A from Clostridium thermocellum. Molecular Genetics and Genomics, 1986, 202, 251-254.	2.4	39
78	Sequence of the cellulase gene ofClostridium thermoceltumcoding for endoglucanase B. Nucleic Acids Research, 1986, 14, 1791-1799.	14.5	111
79	Nucleotide sequence of the cellulase genecelDencoding endoglucanase D ofClostridium thermocellum. Nucleic Acids Research, 1986, 14, 8605-8612.	14.5	142
80	Heterologous hybridization of bacterial DNA to the endoglucanases A and B structural genes celA and celB of Clostridium thermocellum. Annales De L'Institut Pasteur Microbiologie, 1985, 136, 113-124.	0.6	6
81	Sequence of a cellulase gene of the thermophilic bacterium Clostridium thermocellum. Journal of Bacteriology, 1985, 162, 102-105.	2.2	187
82	Cloning and expression of twoClostridium thermocellum endoglucanase genes inEscherichia coli. Applied Biochemistry and Biotechnology, 1984, 9, 349-350.	2.9	0
83	Detection of cellulase activity in polyacrylamide gels using Congo red-stained agar replicas. Analytical Biochemistry, 1983, 131, 333-336.	2.4	279
84	Identification of the endoglucanase encoded by the celB gene of Clostridium thermocellum. Biochimie, 1983, 65, 495-500.	2.6	69
85	Characterization of Two Cel (Cellulose Degradation) Genes of Clostridium Thermocellum Coding for Endoglucanases. Nature Biotechnology, 1983, 1, 589-594.	17.5	80
86	ldentification of N - and C -terminal corticotropin peptides in the M r 80 000 form of neurophysin. FEBS Letters, 1982, 147, 120-124.	2.8	1
87	The Mr 80,000 common forms of neurophysin and vasopressin from bovine neurohypophysis have corticotropin- and Â-endorphin-like sequences and liberate by proteolysis biologically active corticotropin. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78, 6086-6090.	7.1	36
88	Characterization of the 80,000 molecular weight form of neurophysin isolated from bovine neurohypophysis. Journal of Biological Chemistry, 1981, 256, 9289-94.	3.4	19
89	Cell-free synthesis of glial fibrillary acidic protein. Neurochemical Research, 1980, 5, 513-521.	3.3	19
90	Purification and Partial Characterization of Three Extracellular from Cellulomunas sp FEBS Journal, 1978, 87, 525-531.	0.2	58

#	Article	IF	CITATIONS
91	Free and Cellulose-bound Cellulases in a Cellulomonas Species. Journal of General Microbiology, 1977, 101, 191-196.	2.3	48