Tomer Zidki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/49666/publications.pdf Version: 2024-02-01

TOMED ZIDKI

#	Article	IF	CITATIONS
1	Mechanistic implications of the solvent kinetic isotope effect in the hydrolysis of NaBH4. International Journal of Hydrogen Energy, 2022, 47, 3972-3979.	3.8	8
2	Hybrid Nanostructure of Mixed Transition Metal Oxysulfides Supported by Porous PBA as Efficient Electrocatalysts for the Oxygen Evolution Reaction. Israel Journal of Chemistry, 2022, 62, .	1.0	6
3	DFT Study of the BH ₄ ^{â^'} Hydrolysis on Au(111) Surface. ChemPhysChem, 2022, 23,	1.0	3
4	Anchoring MoS ₂ on an ethanol-etched Prussian blue analog for enhanced electrocatalytic efficiency for the oxygen evolution reaction. Materials Chemistry Frontiers, 2022, 6, 1770-1778.	3.2	9
5	NO <i>_X</i> and SO <i>_X</i> Flue Gas Treatment System Based on Sulfur-Enriched Organic Oil in Water Emulsion. ACS Omega, 2021, 6, 2570-2575.	1.6	3
6	Redox Properties of CeIVDOTA in Carbonated Aqueous Solutions. A Radiolytic and an Electrochemical Study. Journal of Physical Chemistry A, 2021, 125, 1436-1446.	1.1	2
7	Silica Support Affects the Catalytic Hydrogen Evolution by Silver. European Journal of Inorganic Chemistry, 2021, 2021, 3054-3058.	1.0	7
8	The Role of Common Alcoholic Sacrificial Agents in Photocatalysis: Is It Always Trivial?. Chemistry - A European Journal, 2021, 27, 15936-15943.	1.7	10
9	Enhancing the Electrocatalytic Oxygen Evolution Reaction Performance of PBA Core-Shell Nanocubes By Phosphorized WS2 Coating. ECS Meeting Abstracts, 2021, MA2021-02, 1746-1746.	0.0	0
10	Electrochemical Active MOF Nanoparticles/Carbon Composite for the Electroreduction of CO2 into Valuable Chemicals. ECS Meeting Abstracts, 2021, MA2021-02, 1820-1820.	0.0	0
11	On the mechanism of reduction of M(H ₂ O) _m ⁿ⁺ by borohydride: the case of Ag(H ₂ O) ₂ ⁺ . Nanoscale, 2020, 12, 1657-1672.	2.8	13
12	On the Differences in the Mechanisms of Reduction of AuCl ₂ [–] and Ag(H ₂ O) ₂ ⁺ with BH ₄ [–] . Journal of Physical Chemistry A, 2020, 124, 10765-10776.	1.1	6
13	On the Remarkable Performance of Silverâ€based Alloy Nanoparticles in 4â€Nitrophenol Catalytic Reduction. ChemCatChem, 2020, 12, 4680-4688.	1.8	21
14	Controllable synthesis of TiO2 nanoparticles and their photocatalytic activity in dye degradation. Materials Research Bulletin, 2020, 126, 110842.	2.7	55
15	Green Synthesis of M ⁰ Nanoparticles (M=Pd, Pt, and Ru) for Electrocatalytic Hydrogen Evolution. Israel Journal of Chemistry, 2020, 60, 630-637.	1.0	4
16	New insights into HER catalysis: the effect of nano-silica support on catalysis by silver nanoparticles. Physical Chemistry Chemical Physics, 2020, 22, 6401-6405.	1.3	9
17	The Chemical Properties of Hydrogen Atoms Adsorbed on M ⁰ â€Nanoparticles Suspended in Aqueous Solutions: The Case of Ag ⁰ â€NPs and Au ⁰ â€NPs Reduced by BD ₄ ^{â^`} . Angewandte Chemie, 2018, 130, 16763-16766.	1.6	3
18	The effect of negatively charged metallic nanocatalysts on their reactions with alkyl radicals. Journal of Coordination Chemistry, 2018, 71, 1791-1798.	0.8	2

Tomer Zidki

#	Article	IF	CITATIONS
19	The Chemical Properties of Hydrogen Atoms Adsorbed on M ⁰ â€Nanoparticles Suspended in Aqueous Solutions: The Case of Ag ⁰ â€NPs and Au ⁰ â€NPs Reduced by BD ₄ ^{â^²} . Angewandte Chemie - International Edition, 2018, 57, 16525-16528.	7.2	18
20	Halo-organic pollutants: The effect of an electrical bias on their decomposition mechanism on porous iron electrodes. Applied Catalysis B: Environmental, 2017, 210, 255-262.	10.8	11
21	Pd0 - and Au0 -Nanoparticles Catalyze the Reduction of Perchlorate by ·C(CH3)2 OH Radicals. European Journal of Inorganic Chemistry, 2017, 2017, 3655-3660.	1.0	7
22	Effect of Hydrogen Pretreatment of Platinum Nanoparticles on their Catalytic Properties: Reactions with Alkyl Radicals – A Mechanistic Study. ChemCatChem, 2016, 8, 2761-2764.	1.8	12
23	Reactions of methyl radicals with silica supported silver nanoparticles in aqueous solutions. Radiation Physics and Chemistry, 2016, 124, 41-45.	1.4	10
24	Water Oxidation Catalyzed by Cobalt(II) Adsorbed on Silica Nanoparticles. Journal of the American Chemical Society, 2012, 134, 14275-14278.	6.6	68
	On the Lifetime of the Transients (NP)ï£;(CH ₃) _{<i>n</i>} (NP=Ag ⁰ ,) Tj ETQ	q1 1 0.784	4314 rgBT
25	and Nanoparticles Suspended in Aqueous Solutions. Chemistry - A European Journal, 2012, 18, 4699-4705.	1.7	22
26	Coating Pt ⁰ Nanoparticles with Methyl Groups: The Reaction Between Methyl Radicals and Pt ⁰ NPs Suspended in Aqueous Solutions. Chemistry - A European Journal, 2012, 18, 6733-6736.	1.7	14
27	Photochemical induced growth and aggregation of metal nanoparticles in diode-array spectrophotometer via excited dimethyl-sulfoxide. Physical Chemistry Chemical Physics, 2010, 12, 12862.	1.3	10
28	Reactions of Alkyl Peroxyl Radicals with Metal Nanoparticles in Aqueous Solutions. Journal of Physical Chemistry C, 2009, 113, 3281-3286.	1.5	10
29	Effect of Silica-Supported Silver Nanoparticles on the Dihydrogen Yields from Irradiated Aqueous Solutions. Journal of Physical Chemistry C, 2007, 111, 10461-10466.	1.5	23
30	Reactions of alkyl-radicals with gold and silver nanoparticles in aqueous solutions. Physical Chemistry Chemical Physics, 2006, 8, 3552.	1.3	46