Brigitte Ksas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4966467/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Singlet Oxygen Is the Major Reactive Oxygen Species Involved in Photooxidative Damage to Plants. Plant Physiology, 2008, 148, 960-968.	4.8	475
2	Elevated Zeaxanthin Bound to Oligomeric LHCII Enhances the Resistance of Arabidopsis to Photooxidative Stress by a Lipid-protective, Antioxidant Mechanism. Journal of Biological Chemistry, 2007, 282, 22605-22618.	3.4	162
3	Light-Induced Acclimation of the <i>Arabidopsis chlorina1</i> Mutant to Singlet Oxygen Â. Plant Cell, 2013, 25, 1445-1462.	6.6	133
4	Decoding β-Cyclocitral-Mediated Retrograde Signaling Reveals the Role of a Detoxification Response in Plant Tolerance to Photooxidative Stress. Plant Cell, 2018, 30, 2495-2511.	6.6	108
5	Using spontaneous photon emission to image lipid oxidation patterns in plant tissues. Plant Journal, 2011, 67, 1103-1115.	5.7	85
6	Plant tolerance to excess light energy and photooxidative damage relies on plastoquinone biosynthesis. Scientific Reports, 2015, 5, 10919.	3.3	85
7	METHYLENE BLUE SENSITIVITY 1 (MBS1) is required for acclimation of Arabidopsis to singlet oxygen and acts downstream of βâ€cyclocitral. Plant, Cell and Environment, 2017, 40, 216-226.	5.7	76
8	<i><scp>A</scp>rabidopsis</i> lipocalins <scp>AtCHL</scp> and <scp>AtTIL</scp> have distinct but overlapping functions essential for lipid protection and seed longevity. Plant, Cell and Environment, 2014, 37, 368-381.	5.7	63
9	OXI1 and DAD Regulate Light-Induced Cell Death Antagonistically through Jasmonate and Salicylate Levels. Plant Physiology, 2019, 180, 1691-1708.	4.8	30
10	Endoplasmic reticulumâ€mediated unfolded protein response is an integral part of singlet oxygen signalling in plants. Plant Journal, 2020, 102, 1266-1280.	5.7	26
11	Chemical quenching of singlet oxygen by plastoquinols and their oxidation products in Arabidopsis. Plant Journal, 2018, 95, 848-861.	5.7	22
12	Interplay between antioxidants in response to photooxidative stress in Arabidopsis. Free Radical Biology and Medicine, 2020, 160, 894-907.	2.9	19
13	Jasmonate. Plant Signaling and Behavior, 2013, 8, e26655.	2.4	18
14	Luminescence imaging of leaf damage induced by lipid peroxidation products and its modulation by β yclocitral. Physiologia Plantarum, 2021, 171, 246-259.	5.2	10
15	Determination of ROS-Induced Lipid Peroxidation by HPLC-Based Quantification of Hydroxy Polyunsaturated Fatty Acids. Methods in Molecular Biology, 2022, , 181-189.	0.9	3
16	Imaging of Lipid Peroxidation-Associated Chemiluminescence in Plants: Spectral Features, Regulation and Origin of the Signal in Leaves and Roots. Antioxidants, 2022, 11, 1333.	5.1	2