Maria Amela-Cortes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4966305/publications.pdf

Version: 2024-02-01

25 papers 636 citations

623734 14 h-index 25 g-index

25 all docs 25 docs citations

25 times ranked

570 citing authors

#	Article	IF	CITATIONS
1	Ionically Self-Assembled Clustomesogen with Switchable Magnetic/Luminescence Properties Containing [Re ₆ Se ₈ (CN) ₆] ^{<i>n</i>p^'} (<i>n</i> = 3, 4) Anionic Clusters. Chemistry of Materials, 2011, 23, 5122-5130.	6.7	72
2	Tuned red NIR phosphorescence of polyurethane hybrid composites embedding metallic nanoclusters for oxygen sensing. Chemical Communications, 2015, 51, 8177-8180.	4.1	66
3	Epoxy Based Ink as Versatile Material for Inkjet-Printed Devices. ACS Applied Materials & Epoxy Based Ink as Versatile Material for Inkjet-Printed Devices. ACS Applied Materials & Epoxy Based Ink as Versatile Material for Inkjet-Printed Devices. ACS Applied Materials & Epoxy Based Ink as Versatile Material for Inkjet-Printed Devices. ACS Applied Materials & Epoxy Based Ink as Versatile Material for Inkjet-Printed Devices. ACS Applied Materials & Epoxy Based Ink as Versatile Material for Inkjet-Printed Devices. ACS Applied Materials & Epoxy Based Ink as Versatile Material for Inkjet-Printed Devices. ACS Applied Materials & Epoxy Based Ink as Versatile Materials & Epoxy Based Ink as Versatile Material for Inkjet-Printed Devices. ACS Applied Materials & Epoxy Based Ink as Versatile Materials & Epoxy Based In	8.0	60
4	Versatility of the ionic assembling method to design highly luminescent PMMA nanocomposites containing [M ₆ Q ⁱ ₈ L ^a ₆] ^{nâ^²} octahedral nano-building blocks. Dalton Transactions, 2016, 45, 237-245.	3.3	53
5	Deep red luminescent hybrid copolymer materials with high transition metal cluster content. Journal of Materials Chemistry C, 2014, 2, 1545-1552.	5.5	52
6	Design and Integration in Electroâ€Optic Devices of Highly Efficient and Robust Redâ€NIR Phosphorescent Nematic Hybrid Liquid Crystals Containing [Mo _{6< sub>1_{8< sub>6(OCOC<i>_{n< sub>6 sub>2<i>n< i>+1< sub>)_{6< sub>]^{2â (⟨i⟩n⟨ i⟩ = 1, 2, 3) Nanoclusters. Advanced Functional Materials, 2015, 25, 4966-4975.}}</i>}</i>}}	ì ^{^14,0} ì [^]	43
7	Mo ₆ cluster-based compounds for energy conversion applications: comparative study of photoluminescence and cathodoluminescence. Science and Technology of Advanced Materials, 2017, 18, 458-466.	6.1	37
8	Supramolecular Anchoring of Octahedral Molybdenum Clusters onto Graphene and Their Synergies in Photocatalytic Water Reduction. Inorganic Chemistry, 2019, 58, 15443-15454.	4.0	34
9	Switchable Two-Dimensional Waveguiding Abilities of Luminescent Hybrid Nanocomposites for Active Solar Concentrators. ACS Applied Materials & Solar Concentrators.	8.0	26
10	Self-erasable inkless imprinting using a dual emitting hybrid organic-inorganic material. Materials Today, 2020, 35, 34-41.	14.2	21
11	Direct Integration of Redâ€NIR Emissive Ceramicâ€like A _n M ₆ X ⁱ ₈ X ^a ₆ Metal Cluster Salts in Organic Copolymers Using Supramolecular Interactions. Chemistry - A European Journal, 2018, 24, 4825-4829.	3.3	20
12	Lord of The Crowns: A New Precious in the Kingdom of Clustomesogens. Angewandte Chemie - International Edition, 2018, 57, 11692-11696.	13.8	20
13	Polarized Phosphorescence of Isotropic and Metalâ€Based Clustomesogens Dispersed into Chiral Nematic Liquid Crystalline Films. Advanced Optical Materials, 2015, 3, 1368-1372.	7.3	17
14	From supramolecular to solid state chemistry: crystal engineering of luminescent materials by trapping molecular clusters in an aluminium-based host matrix. Materials Horizons, 2020, 7, 2399-2406.	12.2	17
15	Facile design of red-emitting waveguides using hybrid nanocomposites made of inorganic clusters dispersed in SU8 photoresist host. Optical Materials, 2016, 52, 196-202.	3.6	14
16	Transparent functional nanocomposite films based on octahedral metal clusters: synthesis by electrophoretic deposition process and characterization. Royal Society Open Science, 2019, 6, 181647.	2.4	13
17	Expanding the Toolbox of Octahedral Molybdenum Clusters and Nanocomposites Made Thereof: Evidence of Two-Photon Absorption Induced NIR Emission and Singlet Oxygen Production. Inorganic Chemistry, 2021, 60, 5446-5451.	4.0	13
18	Metal Atom Clusters as Building Blocks for Multifunctional Proton-Conducting Materials: Theoretical and Experimental Characterization. Inorganic Chemistry, 2018, 57, 9814-9825.	4.0	10

#	Article	IF	CITATIONS
19	When a Red–NIRâ€Emissive Cs 2 [Mo 6 Br 14] Interacts with an Active Diureasil–PEO Matrix: Design of Tunable and Whiteâ€Lightâ€Emitting Hybrid Material. Chemistry - A European Journal, 2019, 25, 15248-15251.	3.3	10
20	Design of polyurea networks containing anticancer and antiâ€inflammatory drugs for dual drug delivery purposes. Journal of Applied Polymer Science, 2022, 139, 51970.	2.6	9
21	Low dimensional solids based on Mo ₆ cluster cyanides and Mn ²⁺ , Mn ³⁺ or Cd ²⁺ metal ions: crystal chemistry, magnetic and optical properties. CrystEngComm, 2018, 20, 3396-3408.	2.6	8
22	Poly(dimethylsiloxane) functionalized with complementary organic and inorganic emitters for the design of white emissive waveguides. Journal of Materials Chemistry C, 2021, 9, 7094-7102.	5.5	7
23	Tailoring the self-assembling abilities of functional hybrid nanomaterials: from rod-like to disk-like clustomesogens based on a luminescent {Mo ₆ Br ₈ } ⁴⁺ inorganic cluster core. Journal of Materials Chemistry C, 2018, 6, 2556-2564.	5.5	6
24	Facile and scalable design of light-emitting and ROS-generating hybrid materials made of polyurea gels embedding a molybdenum cluster-based salt. Dalton Transactions, 2021, 50, 8907-8916.	3.3	4
25	Nanoarchitectonics of Glass Coatings for Near-Infrared Shielding: From Solid-State Cluster-Based Niobium Chlorides to the Shaping of Nanocomposite Films. ACS Applied Materials & Diterfaces, 2022, 14, 21116-21130.	8.0	4