Zihan Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4966222/publications.pdf

Version: 2024-02-01

304743 276875 3,427 41 22 41 citations h-index g-index papers 41 41 41 5713 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	A Lamellar Yolk–Shell Lithiumâ€Sulfur Battery Cathode Displaying Ultralong Cycling Life, High Rate Performance, and Temperature Tolerance. Advanced Science, 2022, 9, e2103517.	11,2	20
2	In Situ Formation of Polycyclic Aromatic Hydrocarbons as an Artificial Hybrid Layer for Lithium Metal Anodes. Nano Letters, 2022, 22, 263-270.	9.1	31
3	Efficient transport system of cultivated mushroom mycelium enables its derived carbon with high performance electrochemical desalination capability. Carbon, 2022, 196, 699-707.	10.3	11
4	Cation-doped ZnS catalysts for polysulfide conversion in lithium–sulfur batteries. Nature Catalysis, 2022, 5, 555-563.	34.4	198
5	<scp>CoSe₂</scp> / <scp>MoS₂</scp> Heterostructures to Couple Polysulfide Adsorption and Catalysis in <scp>Lithiumâ€Sulfur</scp> Batteries ^{â€} . Chinese Journal of Chemistry, 2021, 39, 1138-1144.	4.9	21
6	Sulfophobic and Vacancy Design Enables Selfâ€Cleaning Electrodes for Efficient Desulfurization and Concurrent Hydrogen Evolution with Low Energy Consumption. Advanced Functional Materials, 2021, 31, 2101922.	14.9	34
7	Engineering Two-Dimensional Metal–Organic Framework on Molecular Basis for Fast Li ⁺ Conduction. Nano Letters, 2021, 21, 5805-5812.	9.1	31
8	A Polysulfidesâ€Confined Allâ€inâ€One Porous Microcapsule Lithium–Sulfur Battery Cathode. Small, 2021, 17, e2103051.	10.0	21
9	Novel Doughnutlike Graphene Quantum Dot-Decorated Composites for High-Performance Li–S Batteries Displaying Dual Immobilization Toward Polysulfides. ACS Applied Energy Materials, 2021, 4, 10998-11003.	5.1	7
10	Electrodeposition Technologies for Liâ€Based Batteries: New Frontiers of Energy Storage. Advanced Materials, 2020, 32, e1903808.	21.0	70
11	Efficient Ni ₂ Co ₄ P ₃ Nanowires Catalysts Enhance Ultrahighâ€Loading Lithium–Sulfur Conversion in a Microreactorâ€Like Battery. Advanced Functional Materials, 2020, 30, 1906661.	14.9	134
12	In Situ Tuning of Defects and Phase Transition in Titanium Dioxide by Lithiothermic Reduction. ACS Applied Materials & Samp; Interfaces, 2020, 12, 5750-5758.	8.0	30
13	Renewable Polysulfide Regulation by Versatile Films toward High-Loading Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2020, 12, 47590-47598.	8.0	11
14	Oxygenâ€Deficient Ferric Oxide as an Electrochemical Cathode Catalyst for Highâ€Energy Lithium–Sulfur Batteries. Small, 2020, 16, e2000870.	10.0	49
15	Aliovalent fluorine doping and anodization-induced amorphization enable bifunctional catalysts for efficient water splitting. Journal of Materials Chemistry A, 2020, 8, 10831-10838.	10.3	31
16	Rational Design of a Ni ₃ N _{0.85} Electrocatalyst to Accelerate Polysulfide Conversion in Lithium–Sulfur Batteries. ACS Nano, 2020, 14, 6673-6682.	14.6	212
17	Silicon Quantum Dots Induce Uniform Lithium Plating in a Sandwiched Metal Anode. ChemElectroChem, 2020, 7, 2026-2032.	3.4	8
18	ZIF-derived ZnO/Sb composite scaffolded on carbon framework for Ni-Zn batteries. Journal of Colloid and Interface Science, 2020, 579, 823-831.	9.4	13

#	Article	IF	CITATIONS
19	Electronic modulation of nickel phosphide by iron doping and its assembly on a graphene framework for efficient electrocatalytic water oxidation. Journal of Alloys and Compounds, 2020, 824, 153913.	5 . 5	15
20	Three-dimensional Co ₉ S ₈ nanotube network/sulfur composite cathode with enhanced lithium-sulfur battery performance. Nanotechnology, 2020, 31, 295404.	2.6	4
21	Enhanced synergistic catalysis by a novel triple-phase interface design of NiO/Ru@Ni for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 2344-2350.	10.3	61
22	A novel ternary sulfur/carbon@tin dioxide composite with polysulfides-adsorptive shell and conductive core as high-performance lithium‑sulfur battery cathodes. Applied Surface Science, 2019, 489, 462-469.	6.1	16
23	(Co/Fe) ₄ O ₄ Cubane-Containing Nanorings Fabricated by Phosphorylating Cobalt Ferrite for Highly Efficient Oxygen Evolution Reaction. ACS Catalysis, 2019, 9, 3878-3887.	11.2	38
24	Threeâ€Dimensionally Scaffolded Hydrogel@Sulfur Composite as a Binderâ€Free Polysulfidesâ€Adsorptive Cathode for Highâ€Performance Lithiumâ€Sulfur Batteries. Energy Technology, 2019, 7, 1801158.	3.8	3
25	A bee pupa-infilled honeycomb structure-inspired Li ₂ MnSiO ₄ cathode for high volumetric energy density secondary batteries. Chemical Communications, 2019, 55, 3582-3585.	4.1	4
26	A novel wheel-confined composite as cathode in Li-S batteries with high capacity retention. Journal of Alloys and Compounds, 2019, 776, 504-510.	5.5	11
27	Biomimetic Bipolar Microcapsules Derived from <i>Staphylococcus aureus</i> for Enhanced Properties of Lithium–Sulfur Battery Cathodes. Advanced Energy Materials, 2018, 8, 1702373.	19.5	106
28	Hydrogel assisted synthesis of Li3V2(PO4)3 composite as high energy density and low-temperature stable secondary battery cathode. Journal of Alloys and Compounds, 2018, 739, 837-847.	5. 5	10
29	Low Interface Energies Tune the Electrochemical Reversibility of Tin Oxide Composite Nanoframes as Lithium-Ion Battery Anodes. ACS Applied Materials & Samp; Interfaces, 2018, 10, 36892-36901.	8.0	19
30	Nitrogenâ€Doped CoP Electrocatalysts for Coupled Hydrogen Evolution and Sulfur Generation with Low Energy Consumption. Advanced Materials, 2018, 30, e1800140.	21.0	336
31	Interlayer Lithium Plating in Au Nanoparticles Pillared Reduced Graphene Oxide for Lithium Metal Anodes. Advanced Functional Materials, 2018, 28, 1804133.	14.9	142
32	Electroplating lithium transition metal oxides. Science Advances, 2017, 3, e1602427.	10.3	62
33	Carbonâ€Free O ₂ Cathode with Threeâ€Dimensional Ultralight Nickel Foamâ€Supported Ruthenium Electrocatalysts for Li–O ₂ Batteries. ChemSusChem, 2017, 10, 2714-2719.	6.8	39
34	Multifunctional Co 3 S 4 @sulfur nanotubes for enhanced lithium-sulfur battery performance. Nano Energy, 2017, 37, 7-14.	16.0	335
35	High-performance Li-ion Sn anodes with enhanced electrochemical properties using highly conductive TiN nanotubes array as a 3D multifunctional support. Journal of Power Sources, 2017, 360, 189-195.	7.8	17
36	A novel tin hybrid nano-composite with double nets of carbon matrixes as a stable anode in lithium ion batteries. Chemical Communications, 2017, 53, 13125-13128.	4.1	7

ZIHAN SHEN

#	Article	IF	CITATIONS
37	CuO/ZnO memristors via oxygen or metal migration controlled by electrodes. AIP Advances, 2016, 6, .	1.3	14
38	Structure design of NiCo ₂ O ₄ electrodes for high performance pseudocapacitors and lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 17394-17402.	10.3	53
39	Amorphous ZnO based resistive random access memory. RSC Advances, 2016, 6, 17867-17872.	3.6	109
40	Carbon and Graphene Quantum Dots for Optoelectronic and Energy Devices: A Review. Advanced Functional Materials, 2015, 25, 4929-4947.	14.9	1,072
41	Unipolar resistive switching of ZnO-single-wire memristors. Nanoscale Research Letters, 2014, 9, 381.	5.7	22