Abdul W Basit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4966151/publications.pdf

Version: 2024-02-01

210 papers 18,395 citations

74 h-index

9264

128 g-index

216 all docs

216 docs citations

216 times ranked

10830 citing authors

#	Article	IF	CITATIONS
1	Predicting drug-microbiome interactions with machine learning. Biotechnology Advances, 2022, 54, 107797.	11.7	39
2	Machine learning to empower electrohydrodynamic processing. Materials Science and Engineering C, 2022, 132, 112553.	7.3	12
3	A customizable 3D printed device for enzymatic removal of drugs in water. Water Research, 2022, 208, 117861.	11.3	12
4	Machine learning predicts the effect of food on orally administered medicines. International Journal of Pharmaceutics, 2022, 611, 121329.	5. 2	4
5	Clinical translation of advanced colonic drug delivery technologies. Advanced Drug Delivery Reviews, 2022, 181, 114076.	13.7	51
6	Pharmaceutical Technology in Europe. International Journal of Pharmaceutics, 2022, 613, 121441.	5.2	0
7	Advancing pharmacy and healthcare with virtual digital technologies. Advanced Drug Delivery Reviews, 2022, 182, 114098.	13.7	45
8	Active Machine learning for formulation of precision probiotics. International Journal of Pharmaceutics, 2022, 616, 121568.	5.2	8
9	Volumetric 3D printing for rapid production of medicines. Additive Manufacturing, 2022, 52, 102673.	3.0	20
10	Printing Drugs onto Nails for Effective Treatment of Onychomycosis. Pharmaceutics, 2022, 14, 448.	4.5	10
11	Prediction of Solid-State Form of SLS 3D Printed Medicines Using NIR and Raman Spectroscopy. Pharmaceutics, 2022, 14, 589.	4.5	30
12	Current clinical translation of microbiome medicines. Trends in Pharmacological Sciences, 2022, 43, 281-292.	8.7	8
13	Sex Differences in Intestinal P-Glycoprotein Expression in Wistar versus Sprague Dawley Rats. Pharmaceutics, 2022, 14, 1030.	4.5	8
14	Machine learning predicts electrospray particle size. Materials and Design, 2022, 219, 110735.	7.0	11
15	Poly(lactic acid)-hyperbranched polyglycerol nanoparticles enhance bioadhesive treatment of esophageal disease and reduce systemic drug exposure. Nanoscale, 2022, 14, 8418-8428.	5.6	5
16	To infinity and beyond: Strategies for fabricating medicines in outer space. International Journal of Pharmaceutics: X, 2022, 4, 100121.	1.6	3
17	Accelerating 3D printing of pharmaceutical products using machine learning. International Journal of Pharmaceutics: X, 2022, 4, 100120.	1.6	9
18	Electrochemical biosensors: a nexus for precision medicine. Drug Discovery Today, 2021, 26, 69-79.	6.4	40

#	Article	IF	Citations
19	3D printed tacrolimus suppositories for the treatment of ulcerative colitis. Asian Journal of Pharmaceutical Sciences, 2021, 16, 110-119.	9.1	77
20	Anti-biofilm multi drug-loaded 3D printed hearing aids. Materials Science and Engineering C, 2021, 119, 111606.	7.3	59
21	Vat photopolymerization 3D printing for advanced drug delivery and medical device applications. Journal of Controlled Release, 2021, 329, 743-757.	9.9	189
22	Stereolithography (SLA) 3D printing of a bladder device for intravesical drug delivery. Materials Science and Engineering C, 2021, 120, 111773.	7.3	83
23	Advanced machine-learning techniques in drug discovery. Drug Discovery Today, 2021, 26, 769-777.	6.4	78
24	Additive Manufacturable Materials for Electrochemical Biosensor Electrodes. Advanced Functional Materials, 2021, 31, 2006407.	14.9	58
25	Bitter-blockers as a taste masking strategy: A systematic review towards their utility in pharmaceuticals. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 158, 35-51.	4.3	20
26	Harnessing machine learning for development of microbiome therapeutics. Gut Microbes, 2021, 13, 1-20.	9.8	47
27	Quantification of P-Glycoprotein in the Gastrointestinal Tract of Humans and Rodents: Methodology, Gut Region, Sex, and Species Matter. Molecular Pharmaceutics, 2021, 18, 1895-1904.	4.6	29
28	Semi-solid extrusion 3D printing in drug delivery and biomedicine: Personalised solutions for healthcare challenges. Journal of Controlled Release, 2021, 332, 367-389.	9.9	157
29	5-Aminolevulinic Acid as a Novel Therapeutic for Inflammatory Bowel Disease. Biomedicines, 2021, 9, 578.	3.2	9
30	Fabrication and Characterization of Fast-Dissolving Films Containing Escitalopram/Quetiapine for the Treatment of Major Depressive Disorder. Pharmaceutics, 2021, 13, 891.	4.5	24
31	Advances in powder bed fusion 3D printing in drug delivery and healthcare. Advanced Drug Delivery Reviews, 2021, 174, 406-424.	13.7	119
32	Machine Learning Uncovers Adverse Drug Effects on Intestinal Bacteria. Pharmaceutics, 2021, 13, 1026.	4.5	26
33	Impact of gastrointestinal tract variability on oral drug absorption and pharmacokinetics: An UNGAP review. European Journal of Pharmaceutical Sciences, 2021, 162, 105812.	4.0	137
34	Direct Powder Extrusion 3D Printing of Praziquantel to Overcome Neglected Disease Formulation Challenges in Paediatric Populations. Pharmaceutics, 2021, 13, 1114.	4.5	40
35	Translating 3D printed pharmaceuticals: From hype to real-world clinical applications. Advanced Drug Delivery Reviews, 2021, 174, 553-575.	13.7	149
36	Editorial: Innovations in 2D and 3D printed pharmaceuticals. International Journal of Pharmaceutics, 2021, 605, 120839.	5 . 2	3

#	Article	IF	CITATIONS
37	Harnessing artificial intelligence for the next generation of 3D printed medicines. Advanced Drug Delivery Reviews, 2021, 175, 113805.	13.7	83
38	Let's talk about sex: Differences in drug therapy in males and females. Advanced Drug Delivery Reviews, 2021, 175, 113804.	13.7	74
39	Connected healthcare: Improving patient care using digital health technologies. Advanced Drug Delivery Reviews, 2021, 178, 113958.	13.7	110
40	3D Printed Punctal Plugs for Controlled Ocular Drug Delivery. Pharmaceutics, 2021, 13, 1421.	4.5	35
41	Optical biosensors - Illuminating the path to personalized drug dosing. Biosensors and Bioelectronics, 2021, 188, 113331.	10.1	30
42	Disrupting 3D printing of medicines with machine learning. Trends in Pharmacological Sciences, 2021, 42, 745-757.	8.7	62
43	Machine learning predicts 3D printing performance of over 900 drug delivery systems. Journal of Controlled Release, 2021, 337, 530-545.	9.9	89
44	Influence of probiotic bacteria on gut microbiota composition and gut wall function in an in-vitro model in patients with Parkinson's disease. International Journal of Pharmaceutics: X, 2021, 3, 100087.	1.6	19
45	Solid oral dosage forms. , 2021, , 333-358.		15
46	Progesterone Metabolism by Human and Rat Hepatic and Intestinal Tissue. Pharmaceutics, 2021, 13, 1707.	4.5	3
47	Smartphone-enabled 3D printing of medicines. International Journal of Pharmaceutics, 2021, 609, 121199.	5.2	39
48	A Non-Nutritive Feeding Intervention Alters the Expression of Efflux Transporters in the Gastrointestinal Tract. Pharmaceutics, 2021, 13, 1789.	4.5	2
49	Machine Learning Predicts Drug Metabolism and Bioaccumulation by Intestinal Microbiota. Pharmaceutics, 2021, 13, 2001.	4.5	17
50	Nanoencapsulation for Probiotic Delivery. ACS Nano, 2021, 15, 18653-18660.	14.6	64
51	Machine Learning and Machine Vision Accelerate 3D Printed Orodispersible Film Development. Pharmaceutics, 2021, 13, 2187.	4.5	21
52	M3DISEEN: A novel machine learning approach for predicting the 3D printability of medicines. International Journal of Pharmaceutics, 2020, 590, 119837.	5.2	131
53	The potential of Streptococcus salivarius oral films in the management of dental caries: An inkjet printing approach. International Journal of Pharmaceutics, 2020, 591, 119962.	5.2	25
54	A 4-strain probiotic supplement influences gut microbiota composition and gut wall function in patients with ulcerative colitis. International Journal of Pharmaceutics, 2020, 587, 119648.	5.2	51

#	Article	IF	CITATIONS
55	I Spy with My Little Eye: A Paediatric Visual Preferences Survey of 3D Printed Tablets. Pharmaceutics, 2020, 12, 1100.	4.5	84
56	3D Printed Tacrolimus Rectal Formulations Ameliorate Colitis in an Experimental Animal Model of Inflammatory Bowel Disease. Biomedicines, 2020, 8, 563.	3.2	43
57	Modified drug release: Current strategies and novel technologies for oral drug delivery. , 2020, , 177-197.		4
58	Boosting drug bioavailability in men but not women through the action of an excipient. International Journal of Pharmaceutics, 2020, 587, 119678.	5.2	20
59	3D Printing of Tunable Zero-Order Release Printlets. Polymers, 2020, 12, 1769.	4.5	40
60	3D printing tablets: Predicting printability and drug dissolution from rheological data. International Journal of Pharmaceutics, 2020, 590, 119868.	5.2	75
61	Progestogens Are Metabolized by the Gut Microbiota: Implications for Colonic Drug Delivery. Pharmaceutics, 2020, 12, 760.	4.5	20
62	A dual pH and microbiota-triggered coating (Phloralâ,,¢) for fail-safe colonic drug release. International Journal of Pharmaceutics, 2020, 583, 119379.	5.2	58
63	Recent innovations in 3D-printed personalized medicines: an interview with Abdul Basit. Journal of 3D Printing in Medicine, 2020, 4, 5-7.	2.0	7
64	3D printing: Principles and pharmaceutical applications of selective laser sintering. International Journal of Pharmaceutics, 2020, 586, 119594.	5.2	209
65	3D printed opioid medicines with alcohol-resistant and abuse-deterrent properties. International Journal of Pharmaceutics, 2020, 579, 119169.	5.2	78
66	3D Printed Tablets (Printlets) with Braille and Moon Patterns for Visually Impaired Patients. Pharmaceutics, 2020, 12, 172.	4.5	106
67	Impact of gastrointestinal physiology on drug absorption in special populations––An UNGAP review. European Journal of Pharmaceutical Sciences, 2020, 147, 105280.	4.0	142
68	Stereolithography (SLA) 3D printing of an antihypertensive polyprintlet: Case study of an unexpected photopolymer-drug reaction. Additive Manufacturing, 2020, 33, 101071.	3.0	91
69	Non-destructive dose verification of two drugs within 3D printed polyprintlets. International Journal of Pharmaceutics, 2020, 577, 119066.	5.2	79
70	Gastrointestinal Tracking and Gastric Emptying of Coated Capsules in Rats with or without Sedation Using CT imaging. Pharmaceutics, 2020, 12, 81.	4.5	20
71	Selective Laser Sintering 3D Printing of Orally Disintegrating Printlets Containing Ondansetron. Pharmaceutics, 2020, 12, 110.	4.5	125
72	OPTICOREâ,,¢, an innovative and accurate colonic targeting technology. International Journal of Pharmaceutics, 2020, 583, 119372.	5.2	46

#	Article	IF	CITATIONS
73	Effect of Food and an Animal's Sex on P-Glycoprotein Expression and Luminal Fluids in the Gastrointestinal Tract of Wistar Rats. Pharmaceutics, 2020, 12, 296.	4.5	19
74	Robotic screening of intestinal drug absorption. Nature Biomedical Engineering, 2020, 4, 485-486.	22.5	3
75	3D Printing of a Multi-Layered Polypill Containing Six Drugs Using a Novel Stereolithographic Method. Pharmaceutics, 2019, 11, 274.	4.5	233
76	Automated therapy preparation of isoleucine formulations using 3D printing for the treatment of MSUD: First single-centre, prospective, crossover study in patients. International Journal of Pharmaceutics, 2019, 567, 118497.	5.2	171
77	Shaping the future: recent advances of 3D printing in drug delivery and healthcare. Expert Opinion on Drug Delivery, 2019, 16, 1081-1094.	5.0	189
78	A thermal ink-jet printing approach for evaluating susceptibility of bacteria to antibiotics. Journal of Microbiological Methods, 2019, 164, 105660.	1.6	5
79	Sex-Dependence in the Effect of Pharmaceutical Excipients: Polyoxyethylated Solubilising Excipients Increase Oral Drug Bioavailability in Male but Not Female Rats. Pharmaceutics, 2019, 11, 228.	4.5	18
80	Track-and-trace: Novel anti-counterfeit measures for 3D printed personalized drug products using smart material inks. International Journal of Pharmaceutics, 2019, 567, 118443.	5.2	86
81	Direct powder extrusion 3D printing: Fabrication of drug products using a novel single-step process. International Journal of Pharmaceutics, 2019, 567, 118471.	5.2	176
82	A Proof of Concept for 3D Printing of Solid Lipid-Based Formulations of Poorly Water-Soluble Drugs to Control Formulation Dispersion Kinetics. Pharmaceutical Research, 2019, 36, 102.	3.5	78
83	The mechanisms of pharmacokinetic food-drug interactions – A perspective from the UNGAP group. European Journal of Pharmaceutical Sciences, 2019, 134, 31-59.	4.0	224
84	3D Printed Pellets (Miniprintlets): A Novel, Multi-Drug, Controlled Release Platform Technology. Pharmaceutics, 2019, 11, 148.	4.5	159
85	A decrease in iron availability to human gut microbiome reduces the growth of potentially pathogenic gut bacteria; an in vitro colonic fermentation study. Journal of Nutritional Biochemistry, 2019, 67, 20-27.	4.2	70
86	An Overview of 3D Printing Technologies for Soft Materials and Potential Opportunities for Lipid-based Drug Delivery Systems. Pharmaceutical Research, 2019, 36, 4.	3.5	151
87	Gut reaction: impact of systemic diseases on gastrointestinal physiology and drug absorption. Drug Discovery Today, 2019, 24, 417-427.	6.4	42
88	A four-strain probiotic exerts positive immunomodulatory effects by enhancing colonic butyrate production in vitro. International Journal of Pharmaceutics, 2019, 555, 1-10.	5.2	81
89	Fecal Microbiota Transplantation Capsules with Targeted Colonic Versus Gastric Delivery in Recurrent Clostridium difficile Infection: A Comparative Cohort Analysis of High and Lose Dose. Digestive Diseases and Sciences, 2019, 64, 1672-1678.	2.3	48
90	Use of a water-based probiotic to treat common gut pathogens. International Journal of Pharmaceutics, 2019, 556, 136-141.	5.2	7

#	Article	IF	CITATIONS
91	Sex differences in the gastrointestinal tract of rats and the implications for oral drug delivery. European Journal of Pharmaceutical Sciences, 2018, 115, 339-344.	4.0	32
92	An animal's sex influences the effects of the excipient PEG 400 on the intestinal P-gp protein and mRNA levels, which has implications for oral drug absorption. European Journal of Pharmaceutical Sciences, 2018, 120, 53-60.	4.0	21
93	Personalisation of warfarin therapy using thermal ink-jet printing. European Journal of Pharmaceutical Sciences, 2018, 117, 80-87.	4.0	71
94	Fabricating 3D printed orally disintegrating printlets using selective laser sintering. International Journal of Pharmaceutics, 2018, 541, 101-107.	5. 2	216
95	Layered gadolinium hydroxides for simultaneous drug delivery and imaging. Dalton Transactions, 2018, 47, 3166-3177.	3.3	22
96	Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs. International Journal of Pharmaceutics, 2018, 545, 144-152.	5.2	242
97	Establishing an in vitro permeation model to predict the in vivo sex-related influence of PEG 400 on oral drug absorption. International Journal of Pharmaceutics, 2018, 542, 280-287.	5.2	11
98	3D Printing Pharmaceuticals: Drug Development to Frontline Care. Trends in Pharmacological Sciences, 2018, 39, 440-451.	8.7	336
99	PET/CT imaging of 3D printed devices in the gastrointestinal tract of rodents. International Journal of Pharmaceutics, 2018, 536, 158-164.	5.2	78
100	A slippery slope: On the origin, role and physiology of mucus. Advanced Drug Delivery Reviews, 2018, 124, 16-33.	13.7	130
101	3D printing of drug-loaded gyroid lattices using selective laser sintering. International Journal of Pharmaceutics, 2018, 547, 44-52.	5.2	196
102	Reshaping drug development using 3D printing. Drug Discovery Today, 2018, 23, 1547-1555.	6.4	187
103	All disease begins in the gut: Influence of gastrointestinal disorders and surgery on oral drug performance. International Journal of Pharmaceutics, 2018, 548, 408-422.	5.2	49
104	Printing T3 and T4 oral drug combinations as a novel strategy for hypothyroidism. International Journal of Pharmaceutics, 2018, 549, 363-369.	5.2	64
105	3D printed drug products: Non-destructive dose verification using a rapid point-and-shoot approach. International Journal of Pharmaceutics, 2018, 549, 283-292.	5.2	119
106	3D printed medicines: A new branch of digital healthcare. International Journal of Pharmaceutics, 2018, 548, 586-596.	5.2	184
107	P-glycoprotein expression in the gastrointestinal tract of male and female rats is influenced differently by food. European Journal of Pharmaceutical Sciences, 2018, 123, 569-575.	4.0	16
108	Influence of Geometry on the Drug Release Profiles of Stereolithographic (SLA) 3D-Printed Tablets. AAPS PharmSciTech, 2018, 19, 3355-3361.	3.3	140

#	Article	IF	Citations
109	The Shape of Things to Come: Emerging Applications of 3D Printing in Healthcare. AAPS Advances in the Pharmaceutical Sciences Series, 2018, , 1-19.	0.6	18
110	3D Printing Technologies, Implementation and Regulation: An Overview. AAPS Advances in the Pharmaceutical Sciences Series, 2018, , 21-40.	0.6	20
111	Binder Jet Printing in Pharmaceutical Manufacturing. AAPS Advances in the Pharmaceutical Sciences Series, 2018, , 41-54.	0.6	30
112	The History, Developments and OpportunitiesÂof Stereolithography. AAPS Advances in the Pharmaceutical Sciences Series, 2018, , 55-79.	0.6	27
113	Powder Bed Fusion: The Working Process, Current Applications and Opportunities. AAPS Advances in the Pharmaceutical Sciences Series, 2018, , 81-105.	0.6	21
114	Fused Deposition Modelling: Advances in Engineering and Medicine. AAPS Advances in the Pharmaceutical Sciences Series, 2018, , 107-132.	0.6	18
115	The Role of Semi-Solid Extrusion Printing in Clinical Practice. AAPS Advances in the Pharmaceutical Sciences Series, 2018, , 133-151.	0.6	30
116	A New Dimension: 4D Printing Opportunities in Pharmaceutics. AAPS Advances in the Pharmaceutical Sciences Series, 2018, , 153-162.	0.6	14
117	Medical Applications of 3D Printing. AAPS Advances in the Pharmaceutical Sciences Series, 2018, , 163-182.	0.6	2
118	Effect of Oral Testosterone on Steroid Metabolome and Discovery of a Potential Serum Biomarker of UGT2B17 Interindividual Variability. FASEB Journal, 2018, 32, 834.8.	0.5	0
119	Development of modified release 3D printed tablets (printlets) with pharmaceutical excipients using additive manufacturing. International Journal of Pharmaceutics, 2017, 527, 21-30.	5.2	274
120	Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings. International Journal of Pharmaceutics, 2017, 527, 161-170.	5.2	236
121	In vitro inhibition of Clostridium difficile by commercial probiotics: A microcalorimetric study. International Journal of Pharmaceutics, 2017, 517, 96-103.	5.2	30
122	Fabrication of drug-loaded hydrogels with stereolithographic 3D printing. International Journal of Pharmaceutics, 2017, 532, 313-317.	5.2	199
123	Excipient-mediated alteration in drug bioavailability in the rat depends on the sex of the animal. European Journal of Pharmaceutical Sciences, 2017, 107, 249-255.	4.0	13
124	Patient acceptability of 3D printed medicines. International Journal of Pharmaceutics, 2017, 530, 71-78.	5.2	178
125	Targeted delivery of probiotics to enhance gastrointestinal stability and intestinal colonisation. International Journal of Pharmaceutics, 2017, 530, 224-229.	5.2	97
126	Selective laser sintering (SLS) 3D printing of medicines. International Journal of Pharmaceutics, 2017, 529, 285-293.	5.2	378

#	Article	IF	Citations
127	Fused-filament 3D printing of drug products: Microstructure analysis and drug release characteristics of PVA-based caplets. International Journal of Pharmaceutics, 2016, 514, 290-295.	5.2	192
128	Gastrointestinal stability of the rapeutic anti-TNF \hat{l}_{\pm} lgG1 monoclonal antibodies. International Journal of Pharmaceutics, 2016, 502, 181-187.	5.2	41
129	Estimating the variability in fraction absorbed as a paradigm for informing formulation development in early clinical drug development. European Journal of Pharmaceutical Sciences, 2016, 89, 50-60.	4.0	2
130	3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. Journal of Controlled Release, 2016, 234, 41-48.	9.9	355
131	Sex differences in excipient effects: Enhancement in ranitidine bioavailability in the presence of polyethylene glycol in male, but not female, rats. International Journal of Pharmaceutics, 2016, 506, 237-241.	5.2	12
132	A New Method for Producing Pharmaceutical Co-crystals: Laser Irradiation of Powder Blends. Crystal Growth and Design, 2016, 16, 3307-3312.	3.0	16
133	Inflammatory bowel disease: exploring gut pathophysiology for novel therapeutic targets. Translational Research, 2016, 176, 38-68.	5.0	140
134	Age-mediated changes in the gastrointestinal tract. International Journal of Pharmaceutics, 2016, 512, 382-395.	5.2	71
135	Laser irradiation to produce amorphous pharmaceuticals. International Journal of Pharmaceutics, 2016, 514, 282-289.	5.2	4
136	Diclofenac- \hat{l}^2 -cyclodextrin for colonic drug targeting: In vivo performance in rats. International Journal of Pharmaceutics, 2016, 500, 366-370.	5.2	9
137	Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. International Journal of Pharmaceutics, 2016, 503, 207-212.	5.2	405
138	An investigation into moisture barrier film coating efficacy and its relevance to drug stability in solid dosage forms. International Journal of Pharmaceutics, 2016, 497, 70-77.	5.2	28
139	Animal Farm: Considerations in Animal Gastrointestinal Physiology and Relevance to Drug Delivery in Humans. Journal of Pharmaceutical Sciences, 2015, 104, 2747-2776.	3.3	152
140	A dynamic inÂvitro model to evaluate the intestinal release behaviour of modified-release corticosteroid products. Journal of Drug Delivery Science and Technology, 2015, 25, 36-42.	3.0	21
141	3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 89, 157-162.	4.3	464
142	Toward Oral Delivery of Biopharmaceuticals: An Assessment of the Gastrointestinal Stability of 17 Peptide Drugs. Molecular Pharmaceutics, 2015, 12, 966-973.	4.6	184
143	Gastrointestinal characterisation and drug solubility determination in animals. Journal of Pharmacy and Pharmacology, 2015, 67, 630-639.	2.4	14
144	Gastrointestinal release behaviour of modified-release drug products: Dynamic dissolution testing of mesalazine formulations. International Journal of Pharmaceutics, 2015, 484, 103-108.	5.2	71

#	Article	IF	Citations
145	Stability of peptide drugs in the colon. European Journal of Pharmaceutical Sciences, 2015, 78, 31-36.	4.0	45
146	Solid lipid nanoparticles loaded with lipoyl–memantine codrug: Preparation and characterization. International Journal of Pharmaceutics, 2015, 485, 183-191.	5.2	60
147	Personalised dosing: Printing a dose of one's own medicine. International Journal of Pharmaceutics, 2015, 494, 568-577.	5.2	199
148	Effect of geometry on drug release from 3D printed tablets. International Journal of Pharmaceutics, 2015, 494, 657-663.	5.2	523
149	Inter-subject variability in intestinal drug solubility. International Journal of Pharmaceutics, 2015, 485, 229-234.	5.2	22
150	Fabrication of controlled-release budesonide tablets via desktop (FDM) 3D printing. International Journal of Pharmaceutics, 2015, 496, 414-420.	5.2	272
151	3D Printing of Medicines: Engineering Novel Oral Devices with Unique Design and Drug Release Characteristics. Molecular Pharmaceutics, 2015, 12, 4077-4084.	4.6	398
152	Influence of ageing on the gastrointestinal environment of the rat and its implications for drug delivery. European Journal of Pharmaceutical Sciences, 2014, 62, 76-85.	4.0	18
153	Predicting the gastrointestinal behaviour of modified-release products: Utility of a novel dynamic dissolution test apparatus involving the use of bicarbonate buffers. International Journal of Pharmaceutics, 2014, 475, 585-591.	5.2	42
154	Influence of feeding regimens on rat gut fluids and colonic metabolism of diclofenac- \hat{l}^2 -cyclodextrin. Carbohydrate Polymers, 2014, 112, 758-764.	10.2	5
155	On the Colonic Bacterial Metabolism of Azo-Bonded Prodrugsof 5-Aminosalicylic Acid. Journal of Pharmaceutical Sciences, 2014, 103, 3171-3175.	3.3	87
156	Fused-filament 3D printing (3DP) for fabrication of tablets. International Journal of Pharmaceutics, 2014, 476, 88-92.	5.2	453
157	Oral peptide and protein delivery: intestinal obstacles and commercial prospects. Expert Opinion on Drug Delivery, 2014, 11, 1323-1335.	5.0	106
158	Accelerating the dissolution of enteric coatings in the upper small intestine: Evolution of a novel pH 5.6 bicarbonate buffer system to assess drug release. International Journal of Pharmaceutics, 2014, 468, 172-177.	5.2	27
159	Release of Prednisolone and Inulin from a New Calcium-Alginate Chitosan-Coated Matrix System for Colonic Delivery. Journal of Pharmaceutical Sciences, 2013, 102, 2748-2759.	3.3	15
160	Colonic bacterial metabolism of corticosteroids. International Journal of Pharmaceutics, 2013, 457, 268-274.	5.2	51
161	Microwave synthesis and in vitro stability of diclofenac- \hat{l}^2 -cyclodextrin conjugate for colon delivery. Carbohydrate Polymers, 2013, 93, 512-517.	10.2	18
162	Mucus thickness in the gastrointestinal tract of laboratory animals. Journal of Pharmacy and Pharmacology, 2012, 64, 218-227.	2.4	62

#	Article	IF	Citations
163	Evolution of a physiological pH6.8 bicarbonate buffer system: Application to the dissolution testing of enteric coated products. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 78, 151-157.	4.3	101
164	Spray-drying enteric polymers from aqueous solutions: A novel, economic, and environmentally friendly approach to produce pH-responsive microparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 79, 432-439.	4.3	30
165	Mucoadhesive platforms for targeted delivery to the colon. International Journal of Pharmaceutics, 2011, 420, 11-19.	5.2	36
166	Assessment of gastrointestinal pH, fluid and lymphoid tissue in the guinea pig, rabbit and pig, and implications for their use in drug development. European Journal of Pharmaceutical Sciences, 2011, 42, 3-10.	4.0	131
167	Preparation of Personalized-dose Salbutamol Sulphate Oral Films with Thermal Ink-Jet Printing. Pharmaceutical Research, 2011, 28, 2386-2392.	3.5	168
168	In-Process Crystallization of Acidic Drugs in Acrylic Microparticle Systems: Influence of Physical Factors and Drug–Polymer Interactions. Journal of Pharmaceutical Sciences, 2011, 100, 3284-3293.	3.3	16
169	The effect of polyoxyethylene polymers on the transport of ranitidine in Caco-2 cell monolayers. International Journal of Pharmaceutics, 2011, 409, 164-168.	5.2	31
170	Does sex matter? The influence of gender on gastrointestinal physiology and drug delivery. International Journal of Pharmaceutics, 2011, 415, 15-28.	5.2	147
171	Impact of formulation excipients on human intestinal transit. Journal of Pharmacy and Pharmacology, 2010, 58, 821-825.	2.4	16
172	Measurements of rat and mouse gastrointestinal pH, fluid and lymphoid tissue, and implications for in-vivo experiments. Journal of Pharmacy and Pharmacology, 2010, 60, 63-70.	2.4	481
173	Oral modified-release formulations in motion: The relationship between gastrointestinal transit and drug absorption. International Journal of Pharmaceutics, 2010, 395, 26-36.	5.2	93
174	A paradigm shift in enteric coating: Achieving rapid release in the proximal small intestine of man. Journal of Controlled Release, 2010, 147, 242-245.	9.9	45
175	An investigation into the role of mucus thickness on mucoadhesion in the gastrointestinal tract of pig. European Journal of Pharmaceutical Sciences, 2010, 40, 335-341.	4.0	61
176	A novel double-coating approach for improved pH-triggered delivery to the ileo-colonic region of the gastrointestinal tract. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 74, 311-315.	4.3	38
177	A novel concept in enteric coating: A double-coating system providing rapid drug release in the proximal small intestine. Journal of Controlled Release, 2009, 133, 119-124.	9.9	65
178	Fabrication and in vivo evaluation of highly pH-responsive acrylic microparticles for targeted gastrointestinal delivery. European Journal of Pharmaceutical Sciences, 2009, 37, 284-290.	4.0	42
179	Physiological bicarbonate buffers: stabilisation and use as dissolution media for modified release systems. International Journal of Pharmaceutics, 2009, 382, 56-60.	5.2	92
180	Meal-Induced Acceleration of Tablet Transit Through the Human Small Intestine. Pharmaceutical Research, 2009, 26, 356-360.	3.5	85

#	Article	IF	CITATIONS
181	SEM/EDX and confocal microscopy analysis of novel and conventional enteric-coated systems. International Journal of Pharmaceutics, 2009, 369, 72-78.	5.2	25
182	Colonic treatments and targets: issues and opportunities. Journal of Drug Targeting, 2009, 17, 335-363.	4.4	78
183	Microbiota-triggered colonic delivery: Robustness of the polysaccharide approach in the fed state in man. Journal of Drug Targeting, 2009, 17, 64-71.	4.4	31
184	Interplay Between Intestinal pH, Transit Time and Feed Status on the In Vivo Performance of pH Responsive Ileo-Colonic Release Systems. Pharmaceutical Research, 2008, 25, 1828-1835.	3.5	188
185	Polyethylene Glycol 400 Enhances the Bioavailability of a BCS Class III Drug (Ranitidine) in Male Subjects but Not Females. Pharmaceutical Research, 2008, 25, 2327-2333.	3.5	74
186	An Investigation into the Digestion of Chitosan (Noncrosslinked and Crosslinked) by Human Colonic Bacteria. Journal of Pharmaceutical Sciences, 2008, 97, 3820-3829.	3.3	80
187	Moisture Sorption and Permeability Characteristics of Polymer Films: Implications for Their Use as Barrier Coatings for Solid Dosage Forms Containing Hydrolyzable Drug Substances. Journal of Pharmaceutical Sciences, 2008, 97, 4433-4445.	3.3	20
188	Gut instincts: Explorations in intestinal physiology and drug delivery. International Journal of Pharmaceutics, 2008, 364, 213-226.	5.2	394
189	The gastrointestinal microbiota as a site for the biotransformation of drugs. International Journal of Pharmaceutics, 2008, 363, 1-25.	5.2	533
190	An in vivo comparison of intestinal pH and bacteria as physiological trigger mechanisms for colonic targeting in man. Journal of Controlled Release, 2008, 130, 154-160.	9.9	122
191	Colonic antigen administration induces significantly higher humoral levels of colonic and vaginal IgA, and serum IgG compared to oral administration. Vaccine, 2008, 26, 639-646.	3.8	27
192	Mucoadhesion and the Gastrointestinal Tract. Critical Reviews in Therapeutic Drug Carrier Systems, 2008, 25, 207-258.	2.2	66
193	Simple and universal HPLC-UV method to determine cimetidine, ranitidine, famotidine and nizatidine in urine: Application to the analysis of ranitidine and its metabolites in human volunteers. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2007, 860, 235-240.	2.3	61
194	A comparative in vitro assessment of the drug release performance of pH-responsive polymers for ileo-colonic delivery. International Journal of Pharmaceutics, 2006, 308, 52-60.	5.2	119
195	Colonic drug delivery using amylose films: the role of aqueous ethylcellulose dispersions in controlling drug release. Cellulose, 2006, 14, 25-34.	4.9	33
196	An Investigation into the In Vivo Performance Variability of pH Responsive Polymers for Ileo-Colonic Drug Delivery Using Gamma Scintigraphy in Humans. Journal of Pharmaceutical Sciences, 2006, 95, 2760-2766.	3.3	88
197	Excipient effects on gastrointestinal transit and drug absorption in beagle dogs. International Journal of Pharmaceutics, 2005, 300, 67-75.	5.2	44
198	Exploiting gastrointestinal bacteria to target drugs to the colon: An in vitro study using amylose coated tablets. International Journal of Pharmaceutics, 2005, 300, 89-94.	5.2	57

#	Article	IF	CITATION
199	Advances in Colonic Drug Delivery. Drugs, 2005, 65, 1991-2007.	10.9	177
200	The Hygroscopicity of Moisture Barrier Film Coatings. Drug Development and Industrial Pharmacy, 2005, 31, 959-968.	2.0	23
201	The use of formulation technology to assess regional gastrointestinal drug absorption in humans. European Journal of Pharmaceutical Sciences, 2004, 21, 179-189.	4.0	72
202	Amylose formulations for drug delivery to the colon: a comparison of two fermentation models to assess colonic targeting performance in vitro. International Journal of Pharmaceutics, 2004, 273, 129-134.	5 . 2	61
203	Concentration-Dependent Effects of Polyethylene Glycol 400 on Gastrointestinal Transit and Drug Absorption. Pharmaceutical Research, 2003, 20, 1984-1988.	3.5	69
204	Susceptibility of the H2-receptor antagonists cimetidine, famotidine and nizatidine, to metabolism by the gastrointestinal microflora. International Journal of Pharmaceutics, 2002, 237, 23-33.	5.2	72
205	Influence of polyethylene glycol 400 on the gastrointestinal absorption of ranitidine. Pharmaceutical Research, 2002, 19, 1368-1374.	3 . 5	71
206	The effect of polyethylene glycol 400 on gastrointestinal transit: implications for the formulation of poorly-water soluble drugs. Pharmaceutical Research, 2001, 18, 1146-1150.	3 . 5	98
207	Colonic metabolism of ranitidine: implications for its delivery and absorption. International Journal of Pharmaceutics, 2001, 227, 157-165.	5.2	90
208	The properties of amylose–ethylcellulose films cast from organic-based solvents as potential coatings for colonic drug delivery. European Journal of Pharmaceutical Sciences, 2000, 11, 133-139.	4.0	61
209	The potential of organic-based amylose-ethylcellulose film coatings as oral colon-specific drug delivery systems. AAPS PharmSciTech, 2000, 1, 53-61.	3.3	46
210	Formulation of Ranitidine Pellets by Extrusion-Spheronization with Little or No Microcrystalline Cellulose. Pharmaceutical Development and Technology, 1999, 4, 499-505.	2.4	50