
Hans Geir Eiken

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4966014/publications.pdf Version: 2024-02-01

HANS CEID FIREN

#	Article	IF	CITATIONS
1	Mitogenomics of the suborder Cottoidei (Teleostei: Perciformes): Improved assemblies, mitogenome features, phylogeny, and ecological implications. Genomics, 2022, 114, 110297.	1.3	3
2	Harvest is associated with the disruption of social and fineâ€scale genetic structure among matrilines of a solitary large carnivore. Evolutionary Applications, 2021, 14, 1023-1035.	1.5	6
3	Genetic analysis indicates spatial-dependent patterns of sex-biased dispersal in Eurasian lynx in Finland. PLoS ONE, 2021, 16, e0246833.	1.1	11
4	Sea ice reduction drives genetic differentiation among Barents Sea polar bears. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211741.	1.2	15
5	Large-scale genetic admixture suggests high dispersal in an insect pest, the apple fruit moth. PLoS ONE, 2020, 15, e0236509.	1.1	5
6	Comparison of grizzly bear hairâ€snag and scat sampling along roads to inform wildlife population monitoring. Wildlife Biology, 2020, 2020, 1-12.	0.6	10
7	Genetic changes caused by restocking and hydroelectric dams in demographically bottlenecked brown trout in a transnational subarctic riverine system. Ecology and Evolution, 2019, 9, 6068-6081.	0.8	19
8	Heritability of head size in a hunted large carnivore, the brown bear (<i>Ursus arctos</i>). Evolutionary Applications, 2019, 12, 1124-1135.	1.5	6
9	Multiâ€level patterns in population genetics: Variogram series detects a hidden isolationâ€byâ€distanceâ€dominated structure of Scandinavian brown bears Ursus arctos. Methods in Ecology and Evolution, 2018, 9, 1324-1334.	2.2	13
10	Sociodemographic factors modulate the spatial response of brown bears to vacancies created by hunting. Journal of Animal Ecology, 2018, 87, 247-258.	1.3	54
11	Largeâ€scale migrations of brown bears in Eurasia and to North America during the Late Pleistocene. Journal of Biogeography, 2018, 45, 394-405.	1.4	59
12	Monitoring of the Apple Fruit Moth: Detection of Genetic Variation and Structure Applying a Novel Multiplex Set of 19 STR Markers. Molecules, 2018, 23, 850.	1.7	3
13	Genetic substructure and admixture as important factors in linkage disequilibriumâ€based estimation of effective number of breeders in recovering wildlife populations. Ecology and Evolution, 2017, 7, 10721-10732.	0.8	40
14	Sex-specific genetic analysis indicates low correlation between demographic and genetic connectivity in the Scandinavian brown bear (Ursus arctos). PLoS ONE, 2017, 12, e0180701.	1.1	16
15	Genetic Diversity in Apple Fruit Moth Indicate Different Clusters in the Two Most Important Apple Growing Regions of Norway. Diversity, 2016, 8, 10.	0.7	3
16	High genetic variability of vagrant polar bears illustrates importance of population connectivity in fragmented sea ice habitats. Animal Conservation, 2016, 19, 337-349.	1.5	45
17	Y chromosome haplotype distribution of brown bears (<i>Ursus arctos</i>) in Northern Europe provides insight into population history and recovery. Molecular Ecology, 2015, 24, 6041-6060.	2.0	12
18	Identification and Evaluation of 21 Novel Microsatellite Markers from the Autumnal Moth (Epirrita) Tj ETQq0 0 0) rgBT /Ove 1.8	erlock 10 Tf 50 1

18 22541-22554.

#	Article	IF	CITATIONS
19	Evidence of rapid change in genetic structure and diversity during range expansion in a recovering large terrestrial carnivore. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150092.	1.2	36
20	Y-chromosomal testing of brown bears (Ursus arctos): Validation of a multiplex PCR-approach for nine STRs suitable for fecal and hair samples. Forensic Science International: Genetics, 2015, 19, 197-204.	1.6	2
21	Admixture and Gene Flow from Russia in the Recovering Northern European Brown Bear (Ursus) Tj ETQq1 1 0.784	314 rgBT 1.1	/Qyerlock 1(
22	Brown and Polar Bear Y Chromosomes Reveal Extensive Male-Biased Gene Flow within Brother Lineages. Molecular Biology and Evolution, 2014, 31, 1353-1363.	3.5	90
23	Identification and evaluation of novel di- and tetranucleotide microsatellite markers from the brown bear (Ursus arctos). Conservation Genetics Resources, 2012, 4, 737-741.	0.4	7
24	Connectivity and population subdivision at the fringe of a large brown bear (Ursus arctos) population in North Western Europe. Conservation Genetics, 2012, 13, 681-692.	0.8	68
25	Limited gene flow among brown bear populations in far Northern Europe? Genetic analysis of the east–west border population in the Pasvik Valley. Molecular Ecology, 2012, 21, 3474-3488.	2.0	61
26	Activation of Notch signaling in cardiomyocytes during post-infarction remodeling. Scandinavian Cardiovascular Journal, 2010, 44, 359-366.	0.4	40
27	Circadian Variations in Clock Gene Expression of Human Bone Marrow CD34+ Cells. Journal of Biological Rhythms, 2007, 22, 140-150.	1.4	52
28	Circadian expression of clock genes in purified hematopoietic stem cells is developmentally regulated in mouse bone marrow. Experimental Hematology, 2006, 34, 1248-1260.	0.2	28
29	Clock gene expression in purified mouse hematopoietic stem cells. Experimental Hematology, 2005, 33, 100-107.	0.2	34
30	Complete Mutation Screening and Haplotype Characterization of theBRCA1Gene in 61 Familial Breast Cancer Patients from Norway. Disease Markers, 2005, 21, 29-36.	0.6	1
31	Cytokine networks are pre-activated in T cells from HIV-infected patients on HAART and are under the control of cAMP. Aids, 2004, 18, 171-179.	1.0	30
32	Increased salivary gland tissue expression of Fas, Fas ligand, cytotoxic T lymphocyte–associated antigen 4, and programmed cell death 1 in primary SjĶgren's syndrome. Arthritis and Rheumatism, 2003, 48, 174-185.	6.7	95
33	Stromal Cell–Derived Factor-1α in Unstable Angina. Circulation, 2002, 106, 36-42.	1.6	139
34	Increased gene expression of tumor necrosis factor superfamily ligands in peripheral blood mononuclear cells during chronic heart failure. Cardiovascular Research, 2002, 54, 175-182.	1.8	82
35	Enhanced detection of mutations in BRCA1 exon 11 using restriction endonuclease fingerprinting-single-strand conformation polymorphism. Journal of Molecular Medicine, 2000, 78, 580-587.	1.7	3
36	Diverse PAH transcripts in lymphocytes of PKU patients with putative nonsense (G272X, Y356X) and missense (P281L, R408Q) mutations. FEBS Letters, 1999, 457, 505-508.	1.3	7

HANS GEIR EIKEN

HANS GEIR EIKEN

#	Article	IF	CITATIONS
37	Constant denaturant gel electrophoresis (CDGE) inBRCA1 mutation screening. Human Mutation, 1998, 11, 166-174.	1.1	14
38	Increased 32P-SSCP Sensitivity by Combining RE Digestion and Extended X-ray Film Exposures. BioTechniques, 1997, 22, 598-602.	0.8	6
39	Phenylketonuria splice mutation (EXON6nt-96Ag) masquerading as missense mutation (Y204C). Human Mutation, 1997, 9, 88-90.	1.1	26
40	The Ca 2+ -sensing receptor gene (PCAR1) mutation T151M in isolated autosomal dominant hypoparathyroidism. Human Genetics, 1996, 98, 129-133.	1.8	48
41	PKU mutation G46S is associated with increased aggregation and degradation of the phenylalanine hydroxylase enzyme. Human Mutation, 1996, 7, 228-238.	1.1	51
42	DGGE analysis as supplement to SSCP analysis of the phenylalanine hydroxylase gene: Detection of eight (one de novo, seven inherited) of nine remaining Norwegian PKU mutations. , 1996, 8, 19-22.		6
43	PKU mutation (D143G) associated with an apparent high residual enzyme activity: Expression of a kinetic variant form of phenylalanine hydroxylase in three different systems. , 1996, 8, 236-246.		48
44	The PKU mutation S349P causes complete loss of catalytic activity in the recombinant phenylalanine hydroxylase enzyme. Human Genetics, 1995, 95, 171-3.	1.8	14
45	PKU mutations R408Q and F299C in Norway: Haplotype associations, geographic distributions and phenotype characteristics. Human Genetics, 1992, 88, 608-612.	1.8	19
46	A de novo phenylketonuria mutation: ATG (met) to ATA (ile) in the start codon of the phenylalanine hydroxylase gene. Human Mutation, 1992, 1, 388-391.	1.1	18