Birte Vester

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4965866/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The cfr and cfr-like multiple resistance genes. Research in Microbiology, 2018, 169, 61-66.	1.0	37
2	Mapping of ribosomal 23S ribosomal RNA modifications in <i>Clostridium sporogenes</i> . RNA Biology, 2018, 15, 1-11.	1.5	4
3	Combined Effect of the Cfr Methyltransferase and Ribosomal Protein L3 Mutations on Resistance to Ribosome-Targeting Antibiotics. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	6
4	Resistance to Linezolid. , 2017, , 319-332.		0
5	Lincosamides, Streptogramins, Phenicols, and Pleuromutilins: Mode of Action and Mechanisms of Resistance. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a027037.	2.9	79
6	Biochemical and Computational Analysis of the Substrate Specificities of Cfr and RlmN Methyltransferases. PLoS ONE, 2015, 10, e0145655.	1.1	6
7	A <i>cfr</i> -Like Gene from Clostridium difficile Confers Multiple Antibiotic Resistance by the Same Mechanism as the <i>cfr</i> Gene. Antimicrobial Agents and Chemotherapy, 2015, 59, 5841-5843.	1.4	46
8	Mutations in the Bacterial Ribosomal Protein L3 and Their Association with Antibiotic Resistance. Antimicrobial Agents and Chemotherapy, 2015, 59, 3518-3528.	1.4	38
9	A click chemistry approach to pleuromutilin derivatives. Part 3: Extended footprinting analysis and excellent MRSA inhibition for a derivative with an adenine phenyl side chain. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1043-1046.	1.0	24
10	Improvement of a streptavidin-binding aptamer by LNA- and α-l-LNA-substitutions. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2273-2277.	1.0	15
11	Peptide–LNA oligonucleotide conjugates. Organic and Biomolecular Chemistry, 2013, 11, 4240.	1.5	26
12	Distinction between the Cfr Methyltransferase Conferring Antibiotic Resistance and the Housekeeping RlmN Methyltransferase. Antimicrobial Agents and Chemotherapy, 2013, 57, 4019-4026.	1.4	35
13	Enzymatic synthesis of DNA strands containing α-L-LNA (α-L-configured locked nucleic acid) thymine nucleotides. Artificial DNA, PNA & XNA, 2012, 3, 14-21.	1.4	8
14	The Order Bacillales Hosts Functional Homologs of the Worrisome <i>cfr</i> Antibiotic Resistance Gene. Antimicrobial Agents and Chemotherapy, 2012, 56, 3563-3567.	1.4	43
15	Resistance to Linezolid Caused by Modifications at Its Binding Site on the Ribosome. Antimicrobial Agents and Chemotherapy, 2012, 56, 603-612.	1.4	316
16	A Click Chemistry Approach to Pleuromutilin Derivatives, Part 2: Conjugates with Acyclic Nucleosides and Their Ribosomal Binding and Antibacterial Activity. Journal of Medicinal Chemistry, 2012, 55, 2067-2077.	2.9	30
17	Amplification and Re-Generation of LNA-Modified Libraries. Molecules, 2012, 17, 13087-13097.	1.7	9
18	Locked and Unlocked Nucleosides in Functional Nucleic Acids. Molecules, 2011, 16, 4511-4526.	1.7	36

BIRTE VESTER

#	Article	lF	CITATIONS
19	Duplex and Triplex Formation of Mixed Pyrimidine Oligonucleotides with Stacking of Phenyl-triazole Moieties in the Major Groove. Journal of Organic Chemistry, 2011, 76, 6177-6187.	1.7	35
20	Minimal Substrate Features for Erm Methyltransferases Defined by Using a Combinatorial Oligonucleotide Library. ChemBioChem, 2011, 12, 610-614.	1.3	11
21	Trends towards Lower Antimicrobial Susceptibility and Characterization of Acquired Resistance among Clinical Isolates of Brachyspira hyodysenteriae in Spain. Antimicrobial Agents and Chemotherapy, 2011, 55, 3330-3337.	1.4	76
22	Mutations in 23S rRNA at the Peptidyl Transferase Center and Their Relationship to Linezolid Binding and Cross-Resistance. Antimicrobial Agents and Chemotherapy, 2010, 54, 4705-4713.	1.4	48
23	Insights into the structure, function and evolution of the radical-SAM 23S rRNA methyltransferase Cfr that confers antibiotic resistance in bacteria. Nucleic Acids Research, 2010, 38, 1652-1663.	6.5	75
24	Polymerase directed incorporation studies of LNA-G nucleoside 5â€2-triphosphate and primer extension involving all four LNA nucleotides. New Journal of Chemistry, 2010, 34, 877.	1.4	14
25	Identification of 8-methyladenosine as the modification catalyzed by the radical SAM methyltransferase Cfr that confers antibiotic resistance in bacteria. Rna, 2009, 15, 327-336.	1.6	121
26	Single 23S rRNA mutations at the ribosomal peptidyl transferase centre confer resistance to valnemulin and other antibiotics in <i>Mycobacterium smegmatis</i> by perturbation of the drug binding pocket. Molecular Microbiology, 2009, 71, 1218-1227.	1.2	56
27	Aptamers as a model for functional evaluation of LNA and 2′-amino LNA. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6585-6587.	1.0	56
28	Efficient enzymatic synthesis of LNA-modified DNA duplexes using KOD DNA polymerase. Organic and Biomolecular Chemistry, 2009, 7, 1404.	1.5	53
29	The pleuromutilin drugs tiamulin and valnemulin bind to the RNA at the peptidyl transferase centre on the ribosome. Molecular Microbiology, 2008, 41, 1091-1099.	1.2	150
30	Chemically modified oligonucleotides with efficient RNase H response. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 2296-2300.	1.0	8
31	A Click Chemistry Approach to Pleuromutilin Conjugates with Nucleosides or Acyclic Nucleoside Derivatives and Their Binding to the Bacterial Ribosome. Journal of Medicinal Chemistry, 2008, 51, 4957-4967.	2.9	66
32	Polymerase Chain Reaction and Transcription Using Locked Nucleic Acid Nucleotide Triphosphates. Journal of the American Chemical Society, 2008, 130, 8124-8125.	6.6	80
33	Antibiotic Resistance Mechanisms, with an Emphasis on Those Related to the Ribosome. EcoSal Plus, 2008, 3, .	2.1	1
34	The Advantages of Being Locked. Journal of Biological Chemistry, 2007, 282, 35510-35518.	1.6	26
35	In Vitro Incorporation of LNA Nucleotides. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 1207-1210.	0.4	28
36	Enzymatic Incorporation of LNA Nucleotides into DNA Strands. ChemBioChem, 2007, 8, 490-492.	1.3	67

BIRTE VESTER

#	Article	IF	CITATIONS
37	LNA nucleotides improve cleavage efficiency of singular and binary hammerhead ribozymes. Bioorganic and Medicinal Chemistry, 2007, 15, 6135-6143.	1.4	18
38	Locked nucleoside analogues expand the potential of DNAzymes to cleave structured RNA targets. BMC Molecular Biology, 2006, 7, 19.	3.0	36
39	Interaction of Pleuromutilin Derivatives with the Ribosomal Peptidyl Transferase Center. Antimicrobial Agents and Chemotherapy, 2006, 50, 1458-1462.	1.4	91
40	The Cfr rRNA Methyltransferase Confers Resistance to Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin A Antibiotics. Antimicrobial Agents and Chemotherapy, 2006, 50, 2500-2505.	1.4	613
41	A new mechanism for chloramphenicol, florfenicol and clindamycin resistance: methylation of 23S ribosomal RNA at A2503. Molecular Microbiology, 2005, 57, 1064-1073.	1.2	286
42	Locked nucleic acid (LNA): High affinity targeting of RNA for diagnostics and therapeutics. Drug Discovery Today: Technologies, 2005, 2, 287-290.	4.0	66
43	Mutations in ribosomal protein L3 and 23S ribosomal RNA at the peptidyl transferase centre are associated with reduced susceptibility to tiamulin in Brachyspira spp. isolates. Molecular Microbiology, 2004, 54, 1295-1306.	1.2	117
44	LNA (Locked Nucleic Acid): High-Affinity Targeting of Complementary RNA and DNAâ€. Biochemistry, 2004, 43, 13233-13241.	1.2	644
45	Methylphosphonate LNA: a locked nucleic acid with a methylphosphonate linkage. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 253-256.	1.0	11
46	The avilamycin resistance determinants AviRa and AviRb methylate 23S rRNA at the guanosine 2535 base and the uridine 2479 ribose. Molecular Microbiology, 2003, 49, 309-318.	1.2	45
47	Resistance to the Peptidyl Transferase Inhibitor Tiamulin Caused by Mutation of Ribosomal Protein L3. Antimicrobial Agents and Chemotherapy, 2003, 47, 2892-2896.	1.4	62
48	LNAzymes:Â Incorporation of LNA-Type Monomers into DNAzymes Markedly Increases RNA Cleavage. Journal of the American Chemical Society, 2002, 124, 13682-13683.	6.6	125
49	Macrolide Resistance Conferred by Base Substitutions in 23S rRNA. Antimicrobial Agents and Chemotherapy, 2001, 45, 1-12.	1.4	486
50	Core sequence in the RNA motif recognized by the ErmE methyltransferase revealed by relaxing the fidelity of the enzyme for its target. Rna, 1999, 5, 93-101.	1.6	11
51	Negative in vitro selection identifies the rRNA recognition motif for ErmE methyltransferase. Rna, 1999, 5, 1034-1041.	1.6	5
52	ErmE methyltransferase recognizes features of the primary and secondary structure in a motif within domain V of 23 S rRNA 1 1Edited by D. E. Draper. Journal of Molecular Biology, 1999, 286, 365-374.	2.0	20
53	ErmE methyltransferase recognition elements in RNA substrates 1 1Edited by D. E. Draper. Journal of Molecular Biology, 1998, 282, 255-264.	2.0	26
54	Movement of the 3′-end of tRNA through the peptidyl transferase centre and its inhibition by antibiotics. FEBS Letters, 1997, 406, 223-233.	1.3	54

#	Article	IF	CITATIONS
55	Macrolide Resistance Conferred by Alterations in the Ribosome Target Site. , 0, , 431-439.		2