List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4965449/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High adsorption of sodium diclofenac on post-synthetic modified zirconium-based metal-organic frameworks: Experimental and theoretical studies. Journal of Colloid and Interface Science, 2022, 607, 334-346.	9.4	43
2	Purification of soybean oil from diazinon insecticide by iron-based metal organic framework: Effect of geometrical shape and simulation study. Journal of Molecular Structure, 2022, 1250, 131914.	3.6	46
3	Remarkable adsorption of oxygenated compounds from liquid fuel using copper based framework incorporated onto kaolin: Experimental and theoretical studies. Applied Clay Science, 2022, 216, 106371.	5.2	2
4	Experimental and Molecular Modeling Studies on the Complexation of Chromium(III) with the Angiotensin-Converting Enzyme Inhibitor Captopril. ACS Omega, 2022, 7, 15909-15918.	3.5	0
5	Consecutive removal of heavy metals and dyes by a fascinating method using titanate nanotubes. Journal of Environmental Chemical Engineering, 2021, 9, 104726.	6.7	17
6	Possible adsorption mechanisms of the removal of tetracycline from water by La-doped Zn-Fe-layered double hydroxide. Journal of Molecular Liquids, 2021, 322, 114546.	4.9	38
7	Amino-functionalized Al-MIL-53 for dimethoate pesticide removal from wastewater and their intermolecular interactions. Journal of Molecular Liquids, 2021, 327, 114852.	4.9	55
8	DFT study of cyclic glycine-alanine dipeptide binding to gold nanoclusters. Journal of Molecular Graphics and Modelling, 2021, 103, 107823.	2.4	6
9	Molecular insights on the dynamic stability of peptide nucleic acid functionalized carbon and boron nitride nanotubes. Physical Chemistry Chemical Physics, 2021, 23, 219-228.	2.8	4
10	Complexation of chromium (III) with the antifibrinolytic drug tranexamic acid: Formation, kinetics, and molecular modeling studies. Journal of Molecular Liquids, 2021, 329, 115513.	4.9	2
11	Understanding the physicochemical properties of Zn–Fe LDH nanostructure as sorbent material for removing of anionic and cationic dyes mixture. Scientific Reports, 2021, 11, 21365.	3.3	23
12	Designing a sensitive luminescent probe for organophosphorus insecticides detection based on post-synthetic modification of IRMOF-3. Journal of Molecular Structure, 2020, 1199, 127000.	3.6	15
13	Novel polydatin-loaded chitosan nanoparticles for safe and efficient type 2 diabetes therapy: In silico, in vitro and in vivo approaches. International Journal of Biological Macromolecules, 2020, 154, 1496-1504.	7.5	44
14	First-Principles Study of the Geometric and Electronic Structures and Optical Properties of Vacancy Magnesium Ferrite. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 5432-5443.	2.2	7
15	Electronic structures and optoelectronic properties of ATiOPO ₄ (AÂ=ÂH, Li, Na, K, Rb, Cs, Fr,) Tj E	TQq110.7	84314 rgBT
19	and photo-degradation. Materials Research Express, 2020, 7, 045901.	1.0	O
16	Zn/Fe LDH as a clay-like adsorbent for the removal of oxytetracycline from water: combining experimental results and molecular simulations to understand the removal mechanism. Environmental Science and Pollution Research, 2020, 27, 12256-12269.	5.3	46
17	Influence of the alanine side-chain methyl group on the peptide-gold nanoparticles interactions. Journal of Molecular Liquids, 2020, 302, 112528.	4.9	4
18	Novel synthesis of Ni/Fe layered double hydroxides using urea and glycerol and their enhanced adsorption behavior for Cr(VI) removal. Scientific Reports, 2020, 10, 587.	3.3	107

#	Article	IF	CITATIONS
19	Effect of pressure on the geometric, electronic structure, elastic, and optical properties of the normal spinel MgFe ₂ O ₄ : a first-principles study. Materials Research Express, 2020, 7, 106101.	1.6	23
20	Computational and experimental studies on the efficient removal of diclofenac from water using ZnFe-layered double hydroxide as an environmentally benign absorbent. Journal of the Taiwan Institute of Chemical Engineers, 2019, 102, 297-311.	5.3	56
21	Exploring the intermolecular interaction of serine and threonine dipeptides with gold nanoclusters and nanoparticles of different shapes and sizes by quantum mechanics and molecular simulations. Journal of Molecular Liquids, 2019, 296, 111903.	4.9	16
22	Zeolitic imidazolate frameworks: Experimental and molecular simulation studies for efficient capture of pesticides from wastewater. Journal of Environmental Chemical Engineering, 2019, 7, 103499.	6.7	61
23	Molecular design of mass-separating agents for separation of cyclic ethers and acetonitrile from water. Journal of Molecular Liquids, 2019, 281, 324-331.	4.9	1
24	Gamma radiation as a green method to enhance the dielectric behaviour, magnetization, antibacterial activity and dye removal capacity of Co–Fe LDH nanosheets. RSC Advances, 2019, 9, 32544-32561.	3.6	19
25	Does the peptide backbone unit interact with gold nanoclusters? Insights from computational modeling. Journal of Biomolecular Structure and Dynamics, 2019, 37, 4258-4266.	3.5	6
26	Selective binding of pyrene in subdomain IB of human serum albumin: Combining energy transfer spectroscopy and molecular modelling to understand protein binding flexibility. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 194, 36-44.	3.9	17
27	Good's buffer ionic liquids as relevant phaseâ€forming components of selfâ€buffered aqueous biphasic systems. Journal of Chemical Technology and Biotechnology, 2017, 92, 2287-2299.	3.2	15
28	Coherent Experimental and Simulation Approach To Explore the Underlying Mechanism of Denaturation of Stem Bromelain in Osmolytes. Journal of Physical Chemistry B, 2017, 121, 6456-6470.	2.6	12
29	Phase Separation of Alcohol (1-Propanol, 2-Propanol, or <i>tert</i> Butanol) from Its Aqueous Solution in the Presence of Biological Buffer MOPS. Journal of Chemical & Engineering Data, 2017, 62, 2509-2515.	1.9	5
30	A green process for recovery of 1-propanol/2-propanol from their aqueous solutions: Experimental and MD simulation studies. Journal of Chemical Thermodynamics, 2017, 105, 76-85.	2.0	8
31	Separation of bioactive chamazulene from chamomile extract using metal-organic framework. Journal of Pharmaceutical and Biomedical Analysis, 2017, 146, 126-134.	2.8	43
32	Designing new mass-separating agents based on piperazine-containing good's buffers for separation of propanols and water azeotropic mixtures using COSMO-RS method. Fluid Phase Equilibria, 2016, 425, 40-46.	2.5	7
33	Coordination abilities of Good's buffer ionic liquids toward europium(III) ion in aqueous solution. Journal of Chemical Thermodynamics, 2016, 94, 152-159.	2.0	12
34	Separation of 1,3-dioxolane, 1,4-dioxane, acetonitrile and tert -butanol from their aqueous solutions by using Good's buffer HEPES-Na as an auxiliary agent. Journal of the Taiwan Institute of Chemical Engineers, 2016, 66, 43-53.	5.3	8
35	Organic-phase biological buffers for biochemical and biological research in organic media. Journal of Molecular Liquids, 2016, 221, 197-205.	4.9	10
36	Interactions of pyridinium, pyrrolidinium or piperidinium based ionic liquids with water: Measurements and COSMO-RS modelling. Fluid Phase Equilibria, 2016, 414, 93-100.	2.5	29

#	Article	IF	CITATIONS
37	Complexation and molecular modeling studies of europium(III)–gallic acid–amino acid complexes. Journal of Inorganic Biochemistry, 2016, 157, 25-33.	3.5	27
38	Isobaric vapour–liquid equilibrium of (tert-butanol+water) system with biological buffer TRIS at 101.3kPa. Journal of Chemical Thermodynamics, 2016, 98, 159-164.	2.0	15
39	Extraction of an active enzyme by self-buffering ionic liquids: a green medium for enzymatic research. RSC Advances, 2016, 6, 18567-18576.	3.6	23
40	Self-buffering and biocompatible ionic liquid based biological media for enzymatic research. RSC Advances, 2015, 5, 106764-106773.	3.6	17
41	Novel Biocompatible and Selfâ€buffering Ionic Liquids for Biopharmaceutical Applications. Chemistry - A European Journal, 2015, 21, 4781-4788.	3.3	96
42	Quantifying the co-solvent effects on trypsin from the digestive system of carp Catla catla by biophysical techniques and molecular dynamics simulations. RSC Advances, 2015, 5, 43023-43035.	3.6	3
43	Extraction and stability of bovine serum albumin (BSA) using cholinium-based Good's buffers ionic liquids. Process Biochemistry, 2015, 50, 1158-1166.	3.7	65
44	Good's buffers as novel phase-forming components of ionic-liquid-based aqueous biphasic systems. Biochemical Engineering Journal, 2015, 101, 142-149.	3.6	22
45	Evaluating Self-buffering Ionic Liquids for Biotechnological Applications. ACS Sustainable Chemistry and Engineering, 2015, 3, 3420-3428.	6.7	46
46	(Liquid+liquid), (solid+liquid), and (solid+liquid+liquid) equilibria of systems containing cyclic ether (tetrahydrofuran or 1,3-dioxolane), water, and a biological buffer MOPS. Journal of Chemical Thermodynamics, 2015, 82, 93-98.	2.0	17
47	Buffers more than buffering agent: introducing a new class of stabilizers for the protein BSA. Physical Chemistry Chemical Physics, 2015, 17, 1114-1133.	2.8	32
48	Thermodynamic Contribution of Amino Acids in Ionic Liquids Towards Protein Stability. Current Biochemical Engineering, 2014, 1, 125-140.	1.3	9
49	Experimental and Computational Study of CO ₂ Storage and Sequestration with Aqueous 2-Amino-2-hydroxymethyl-1,3-propanediol (TRIS) Solutions. Journal of Physical Chemistry A, 2014, 118, 11572-11582.	2.5	13
50	Superactivity of \hat{I} ±-chymotrypsin with biological buffers, TRIS, TES, TAPS, and TAPSO in aqueous solutions. RSC Advances, 2014, 4, 51111-51116.	3.6	17
51	Good's buffers as a basis for developing self-buffering and biocompatible ionic liquids for biological research. Green Chemistry, 2014, 16, 3149-3159.	9.0	94
52	Effect of the Cation on the Interactions between Alkyl Methyl Imidazolium Chloride Ionic Liquids and Water. Journal of Physical Chemistry B, 2014, 118, 10503-10514.	2.6	58
53	Phase Behavior and Molecular Dynamics Simulation Studies of New Aqueous Two-Phase Separation Systems Induced by HEPES Buffer. Journal of Physical Chemistry B, 2013, 117, 563-582.	2.6	28
54	Interactions of bovine serum albumin with biological buffers, TES, TAPS, and TAPSO in aqueous solutions. Process Biochemistry, 2013, 48, 1686-1696.	3.7	25

#	Article	IF	CITATIONS
55	Stability Constants for the Equilibrium Models of Iron(III) with Several Biological Buffers in Aqueous Solutions. Journal of Solution Chemistry, 2013, 42, 2296-2309.	1.2	25
56	Buffering-out: Separation of tetrahydrofuran, 1,3-dioxolane, or 1,4-dioxane from their aqueous solutions using EPPS buffer at 298.15K. Separation and Purification Technology, 2013, 105, 33-40.	7.9	17
57	Interruption of hydration state of thermoresponsive polymer, poly(N-isopropylacrylamide) in guanidinium hydrochloride. Polymer, 2013, 54, 791-797.	3.8	14
58	TES buffer-induced phase separation of aqueous solutions of several water-miscible organic solvents at 298.15 K: Phase diagrams and molecular dynamic simulations. Journal of Chemical Physics, 2013, 138, 244501.	3.0	24
59	Phase diagrams of acetonitrile or (acetone+water+EPPS) buffer phase separation systems at 298.15K and quantum chemical modeling. Journal of Chemical Thermodynamics, 2012, 54, 134-141.	2.0	24
60	Destruction of hydrogen bonds of poly(N-isopropylacrylamide) aqueous solution by trimethylamineN-oxide. Journal of Chemical Physics, 2012, 136, 234904.	3.0	35
61	The buffering-out effect and phase separation in aqueous solutions of EPPS buffer with 1-propanol, 2-propanol, or 2-methyl-2-propanol at T= 298.15 K. Journal of Chemical Thermodynamics, 2012, 47, 154-161.	2.0	18
62	Interactions of Biological Buffers with Macromolecules: The Ubiquitous "Smart―Polymer PNIPAM and the Biological Buffers MES, MOPS, and MOPSO. Macromolecules, 2011, 44, 8575-8589.	4.8	44
63	Complex Equilibria in Aqueous Solutions of Chromium(III) with Some Biological pH Buffers. Journal of Chemical & Engineering Data, 2011, 56, 3541-3551.	1.9	17
64	Solubility and Phase Separation of 2-(<i>N</i> -Morpholino)ethanesulfonic Acid (MES) and 4-(<i>N</i> -Morpholino)butanesulfonic Acid (MOBS) in Aqueous 1,4-Dioxane and Ethanol Solutions. Journal of Chemical & Engineering Data, 2011, 56, 4436-4443.	1.9	19
65	Iron(III), Chromium(III), and Copper(II) Complexes of <scp>l</scp> -Norvaline and Ferulic Acid. Journal of Chemical & Engineering Data, 2011, 56, 532-540.	1.9	32
66	Complex Formation Between Ferric(III), Chromium(III), and Cupric(II) Metal Ions and (O,N) and (O,O) Donor Ligands with Biological Relevance in Aqueous Solution. Journal of Solution Chemistry, 2011, 40, 1965-1986.	1.2	26
67	Solubility and phase separation of 4-morpholinepropanesulfonic acid (MOPS), and 3-morpholino-2-hydroxypropanesulfonic acid (MOPSO) in aqueous 1,4-dioxane and ethanol solutions. Journal of Chemical Thermodynamics, 2011, 43, 1723-1730.	2.0	20
68	New Insights into Buffer-Ionic Salt Interactions: Solubilities, Transfer Gibbs Energies, and Transfer Molar Volumes of TAPS and TAPSO from Water toÂAqueous Electrolyte Solutions. Journal of Solution Chemistry, 2010, 39, 1665-1680.	1.2	1
69	Buffer interactions: Solubilities and transfer free energies of TRIS, TAPS, TAPSO, and TABS from water to aqueous ethanol solutions. Fluid Phase Equilibria, 2010, 289, 122-128.	2.5	9
70	Volumetric properties of MES, MOPS, MOPSO, and MOBS in water and in aqueous electrolyte solutions. Thermochimica Acta, 2010, 505, 86-97.	2.7	3
71	Palladium(II) Complexes Containing Dipicolinic Acid (DPA), Iminodiacetic Acid (IDA), and Various Biologically Important Ligands. Journal of Chemical & Engineering Data, 2010, 55, 754-758.	1.9	14
72	Interactions of TRIS [tris(hydroxymethyl)aminomethane] and related buffers with peptide backbone: Thermodynamic characterization. Physical Chemistry Chemical Physics, 2010, 12, 12840.	2.8	50

#	Article	IF	CITATIONS
73	Buffer interactions: Densities and solubilities of some selected biological buffers in water and in aqueous 1,4-dioxane solutions. Biochemical Engineering Journal, 2009, 46, 334-344.	3.6	21
74	Interaction of biological buffers with electrolytes: Densities of aqueous solutions of two substituted aminosulfonic acids and ionic salts from T=(298.15 to 328.15)K. Journal of Chemical Thermodynamics, 2009, 41, 705-715.	2.0	7
75	Iron Complexation Studies of Gallic Acid. Journal of Chemical & amp; Engineering Data, 2009, 54, 35-42.	1.9	112
76	Buffers and Ionic Salts: Densities and Solubilities of Aqueous and Electrolyte Solutions of Tris(hydroxymethyl)aminomethane and <i>N</i> -Tris[hydroxymethyl]-4-amino-butanesulfonic Acid. Journal of Chemical & Engineering Data, 2009, 54, 2501-2512.	1.9	11
77	Thermodynamic studies on complexation of divalent transition metal ions with some zwitterionic buffers for biochemical and physiological research. Journal of Chemical Thermodynamics, 2007, 39, 304-308.	2.0	9
78	Buffers for the Physiological pH Range: Acidic Dissociation Constants of Zwitterionic Compounds in Various Hydroorganic Media. Annali Di Chimica, 2005, 95, 105-109.	0.6	7
79	Thermodynamics of the second-stage dissociation of 2-[N-(2-hydroxyethyl)-N-methylaminomethyl]-propenoic acid (HEMPA) in water at different ionic strength and different solvent mixtures. Journal of Chemical Thermodynamics, 2005, 37, 43-48.	2.0	9
80	Metal Ionâ^'Buffer Interactions. Complex Formation ofN,N-bis(2-Hydroxyethyl)glycine (Bicine) with Various Biologically Relevant Ligands. Journal of Chemical & Engineering Data, 2005, 50, 882-887.	1.9	7
81	Mixed-Ligand Complex Formation Equilibria of Cobalt(II), Nickel(II), and Copper(II) withN,N-Bis(2-hydroxyethyl)glycine (Bicine) and Some Amino Acids. Journal of Chemical & Engineering Data, 2005, 50, 157-163.	1.9	17
82	Equilibrium Studies of Binary and Ternary Complexes Involving Tricine and Some Selected a-Amino Acids. Monatshefte Für Chemie, 2004, 135, 385-395.	1.8	16
83	Thermodynamic Study of the Second-Stage Dissociation of N, N-Bis-(2-Hydroxyethyl)Glycine (Bicine) in Water at Different Ionic Strength and Different Solvent Mixtures. Annali Di Chimica, 2004, 94, 971-978.	0.6	8