Marinella Striccoli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4965201/publications.pdf

Version: 2024-02-01

178 papers 4,100 citations

126708 33 h-index 53 g-index

182 all docs 182 docs citations

182 times ranked 6167 citing authors

#	Article	IF	CITATIONS
1	Shape and Phase Control of Colloidal ZnSe Nanocrystals. Chemistry of Materials, 2005, 17, 1296-1306.	3.2	220
2	Nanocomposite materials for photocatalytic degradation of pollutants. Catalysis Today, 2017, 281, 85-100.	2.2	161
3	Optical properties of hybrid composites based on highly luminescent CdS nanocrystals in polymer. Nanotechnology, 2004, 15, S240-S244.	1.3	150
4	Exploring the surface chemistry of cesium lead halide perovskite nanocrystals. Nanoscale, 2019, 11, 986-999.	2.8	106
5	Visible-Light-Active TiO2-Based Hybrid Nanocatalysts for Environmental Applications. Catalysts, 2017, 7, 100.	1.6	93
6	Colloidal TiO2Nanocrystals/MEH-PPV Nanocomposites:Â Photo(electro)chemical Study. Journal of Physical Chemistry B, 2005, 109, 1554-1562.	1.2	91
7	Quantum cascade disk lasers. Applied Physics Letters, 1996, 69, 2456-2458.	1.5	86
8	Photochemical Synthesis of Water-Soluble Gold Nanorods: The Role of Silver in Assisting Anisotropic Growth. Chemistry of Materials, 2009, 21, 4192-4202.	3.2	85
9	Percolating networks of TiO2 nanorods and carbon for high power lithium insertion electrodes. Journal of Power Sources, 2012, 206, 301-309.	4.0	81
10	Synthesis of Poly(arylenevinylene)s with Fluorinated Vinylene Units. European Journal of Organic Chemistry, 2008, 2008, 1977-1982.	1.2	69
11	Dispersed and Encapsulated Gain Medium in Plasmonic Nanoparticles: a Multipronged Approach to Mitigate Optical Losses. ACS Nano, 2011, 5, 5823-5829.	7.3	66
12	Next-generation thermo-plasmonic technologies and plasmonic nanoparticles in optoelectronics. Progress in Quantum Electronics, 2015, 41, 23-70.	3.5	65
13	TiO2 nanocrystals – MEH-PPV composite thin films as photoactive material. Thin Solid Films, 2004, 451-452, 64-68.	0.8	64
14	Red-emitting AlEgen for luminescent solar concentrators. Materials Chemistry Frontiers, 2017, 1, 1406-1412.	3.2	63
15	TiO ₂ nanorods/PMMA copolymer-based nanocomposites: highly homogeneous linear and nonlinear optical material. Nanotechnology, 2008, 19, 205705.	1.3	57
16	Spectroscopic Study on Imidazolium-Based Ionic Liquids: Effect of Alkyl Chain Length and Anion. Journal of Physical Chemistry B, 2012, 116, 3512-3518.	1.2	57
17	TiO2 colloidal nanocrystals functionalization of PMMA: A tailoring of optical properties and chemical adsorption. Sensors and Actuators B: Chemical, 2007, 126, 138-143.	4.0	56
18	Nanocrystal-Based Luminescent Composites for Nanoimprinting Lithography. Small, 2007, 3, 822-828.	5.2	55

#	Article	IF	Citations
19	Sorafenib delivery nanoplatform based on superparamagnetic iron oxide nanoparticles magnetically targets hepatocellular carcinoma. Nano Research, 2017, 10, 2431-2448.	5.8	54
20	Post-synthesis phase and shape evolution of CsPbBr3 colloidal nanocrystals: The role of ligands. Nano Research, 2019, 12, 1155-1166.	5.8	49
21	Insights into the role of the lead/surfactant ratio in the formation and passivation of cesium lead bromide perovskite nanocrystals. Nanoscale, 2020, 12, 623-637.	2.8	48
22	Colloidal Inorganic Nanocrystal Based Nanocomposites: Functional Materials for Micro and Nanofabrication. Materials, 2010, 3, 1316-1352.	1.3	47
23	Improved optical properties of CdS quantum dots by ligand exchange. Materials Science and Engineering C, 2003, 23, 1083-1086.	3.8	46
24	UV-Curable Nanocomposite Based on Methacrylic-Siloxane Resin and Surface-Modified TiO2 Nanocrystals. ACS Applied Materials & Samp; Interfaces, 2015, 7, 15494-15505.	4.0	45
25	Inkjetâ€Printed Multicolor Arrays of Highly Luminescent Nanocrystalâ€Based Nanocomposites. Small, 2009, 5, 1051-1057.	5.2	44
26	An Epoxy Photoresist Modified by Luminescent Nanocrystals for the Fabrication of 3D Highâ€Aspectâ€Ratio Microstructures. Advanced Functional Materials, 2007, 17, 2009-2017.	7.8	43
27	Luminescent Oil-Soluble Carbon Dots toward White Light Emission: A Spectroscopic Study. Journal of Physical Chemistry C, 2018, 122, 839-849.	1.5	43
28	High quality CdS nanocrystals: surface effects. Synthetic Metals, 2003, 139, 597-600.	2.1	42
29	Highly selective luminescent nanostructures for mitochondrial imaging and targeting. Nanoscale, 2016, 8, 3350-3361.	2.8	38
30	All solution processed low turn-on voltage near infrared LEDs based on core–shell PbS–CdS quantum dots with inverted device structure. Nanoscale, 2014, 6, 8551-8555.	2.8	37
31	Single white light emitting hybrid nanoarchitectures based on functionalized quantum dots. Journal of Materials Chemistry C, 2014, 2, 5286.	2.7	36
32	SERS Properties of Gold Nanorods at Resonance with Molecular, Transverse, and Longitudinal Plasmon Excitations. Plasmonics, 2014, 9, 581-593.	1.8	36
33	Emerging methods for fabricating functional structures by patterning and assembling engineered nanocrystals. Physical Chemistry Chemical Physics, 2010, 12, 11197.	1.3	35
34	Interaction of TiO ₂ Nanocrystals with Imidazolium-Based Ionic Liquids. Journal of Physical Chemistry C, 2013, 117, 12923-12929.	1.5	33
35	Single Domain 10 nm Ferromagnetism Imprinted on Superparamagnetic Nanoparticles Using Chiral Molecules. Small, 2019, 15, e1804557.	5.2	33
36	\hat{l}_{\pm} -Cyclodextrin Functionalized CdS Nanocrystals for Fabrication of 2/3 D Assemblies. Journal of Physical Chemistry B, 2006, 110, 17388-17399.	1.2	31

#	Article	IF	CITATIONS
37	FZD10 Carried by Exosomes Sustains Cancer Cell Proliferation. Cells, 2019, 8, 777.	1.8	31
38	Quantum Phenomena in Nanomaterials: Coherent Superpositions of Fine Structure States in CdSe Nanocrystals at Room Temperature. Journal of Physical Chemistry C, 2019, 123, 31286-31293.	1.5	31
39	Hybrid Assemblies of Fluorescent Nanocrystals and Membrane Proteins in Liposomes. Langmuir, 2014, 30, 1599-1608.	1.6	30
40	In Situ Formation of Zwitterionic Ligands: Changing the Passivation Paradigms of CsPbBr ₃ Nanocrystals. Nano Letters, 2022, 22, 4437-4444.	4.5	30
41	Fabrication of flexible all-inorganic nanocrystal solar cells by room-temperature processing. Energy and Environmental Science, 2013, 6, 1565.	15.6	29
42	Photoactive Hybrid Material Based on Pyrene Functionalized PbS Nanocrystals Decorating CVD Monolayer Graphene. ACS Applied Materials & Samp; Interfaces, 2015, 7, 4151-4159.	4.0	29
43	Self-organization of mono- and bi-modal PbS nanocrystal populations in superlattices. CrystEngComm, 2011, 13, 3988.	1.3	28
44	Biotin-decorated silica coated PbS nanocrystals emitting in the second biological near infrared window for bioimaging. Nanoscale, 2014, 6, 7924-7933.	2.8	28
45	Direct growth of shape controlled TiO2 nanocrystals onto SWCNTs for highly active photocatalytic materials in the visible. Applied Catalysis B: Environmental, 2015, 178, 91-99.	10.8	28
46	Role of spacer cations and structural distortion in two-dimensional germanium halide perovskites. Journal of Materials Chemistry C, 2021, 9, 9899-9906.	2.7	28
47	Electronic distribution in superlattice quantum cascade lasers. Applied Physics Letters, 2000, 77, 1088-1090.	1.5	27
48	Influence of Keto Groups on the Optical, Electronic, and Electroluminescent Properties of Random Fluorenone-Containing Poly(fluorenylene-vinylene)s. Journal of Physical Chemistry C, 2008, 112, 20076-20087.	1.5	27
49	A push–pull silafluorene fluorophore for highly efficient luminescent solar concentrators. RSC Advances, 2017, 7, 37302-37309.	1.7	27
50	Hybrid Junctions of Zinc(II) and Magnesium(II) Phthalocyanine with Wide-Band-Gap Semiconductor Nano-oxides:Â Spectroscopic and Photoelectrochemical Characterization. Journal of Physical Chemistry B, 2006, 110, 24424-24432.	1.2	26
51	UV-Light-Driven Immobilization of Surface-Functionalized Oxide Nanocrystals onto Silicon. Advanced Functional Materials, 2007, 17, 201-211.	7.8	26
52	Deciphering hot- and multi-exciton dynamics in core–shell QDs by 2D electronic spectroscopies. Physical Chemistry Chemical Physics, 2018, 20, 18176-18183.	1.3	26
53	Spontaneous emission control of colloidal nanocrystals using nanoimprinted photonic crystals. Applied Physics Letters, 2007, 90, 011115.	1.5	25
54	A Multifrequency EPR Study on Organic-Capped Anatase TiO ₂ Nanocrystals. Journal of Physical Chemistry C, 2009, 113, 6221-6226.	1.5	25

#	Article	lF	CITATIONS
55	Near Infrared Emission from Monomodal and Bimodal PbS Nanocrystal Superlattices. Journal of Physical Chemistry C, 2012, 116, 6143-6152.	1.5	25
56	Au nanoparticle <i>iin situ</i> decorated RGO nanocomposites for highly sensitive electrochemical genosensors. Journal of Materials Chemistry B, 2019, 7, 768-777.	2.9	25
57	Plasma Treated Water Solutions in Cancer Treatments: The Contrasting Role of RNS. Antioxidants, 2021, 10, 605.	2.2	25
58	GISAXS and GIWAXS study on self-assembling processes of nanoparticle based superlattices. CrystEngComm, 2014, 16, 9482-9492.	1.3	23
59	Fabrication of photoactive heterostructures based on quantum dots decorated with Au nanoparticles. Science and Technology of Advanced Materials, 2016, 17, 98-108.	2.8	23
60	Effect of shape and surface chemistry of TiO2 colloidal nanocrystals on the organic vapor absorption capacity of TiO2/PMMA composite. Polymer, 2008, 49, 5526-5532.	1.8	22
61	Biofunctionalization of Anisotropic Nanocrystalline Semiconductor–Magnetic Heterostructures. Langmuir, 2011, 27, 6962-6970.	1.6	22
62	A combined size sorting strategy for monodisperse plasmonic nanostructures. Nanoscale, 2013, 5, 3272.	2.8	22
63	High Surface Area Mesoporous Silica Nanoparticles with Tunable Size in the Sub-Micrometer Regime: Insights on the Size and Porosity Control Mechanisms. Molecules, 2021, 26, 4247.	1.7	22
64	Luminescent nanocrystals in phospholipid micelles for bioconjugation: An optical and structural investigation. Journal of Colloid and Interface Science, 2008, 325, 558-566.	5.0	21
65	The fate of silver ions in the photochemical synthesis of gold nanorods: an Extended X-ray Absorption Fine Structure Analysis. Dalton Transactions, 2009, , 10367.	1.6	21
66	Photoelectrochemical study on photosynthetic pigments-sensitized nanocrystalline ZnO films. Bioelectrochemistry, 2004, 63, 99-102.	2.4	20
67	Selective confinement of oleylamine capped Au nanoparticles in self-assembled PS-b-PEO diblock copolymer templates. Soft Matter, 2014, 10, 1676-1684.	1.2	20
68	NIR Emitting Nanoprobes Based on Cyclic RGD Motif Conjugated PbS Quantum Dots for Integrin-Targeted Optical Bioimaging. ACS Applied Materials & Samp; Interfaces, 2017, 9, 43113-43126.	4.0	20
69	Optical and dielectric properties of PMMA (poly(methyl methacrylate))/carbon dots composites. Polymer Composites, 2019, 40, E1312-E1319.	2.3	20
70	Correlation between the structural and optical properties of polydispersed II–VI quantum dots in glass matrix. Journal of Applied Physics, 1991, 70, 6898-6901.	1.1	19
71	Photoelectrochemical properties of Zn(II) phthalocyanine/ZnO nanocrystals heterojunctions: nanocrystal surface chemistry effect. Applied Surface Science, 2005, 246, 367-371.	3.1	19
72	Nanoimprinted photonic crystals for the modification of the (CdSe)ZnS nanocrystals light emission. Microelectronic Engineering, 2007, 84, 1574-1577.	1.1	19

#	Article	IF	Citations
73	Drop-on-demand inkjet printing of highly luminescent CdS and CdSe@ZnS nanocrystal based nanocomposites. Microelectronic Engineering, 2009, 86, 1124-1126.	1.1	19
74	Electroactive Layer-by-Layer Plasmonic Architectures Based on Au Nanorods. Langmuir, 2014, 30, 2608-2618.	1.6	19
75	Integrin-targeting with peptide-bioconjugated semiconductor-magnetic nanocrystalline heterostructures. Nano Research, 2016, 9, 644-662.	5. 8	19
76	A designed UV–vis light curable coating nanocomposite based on colloidal TiO2 NRs in a hybrid resin for stone protection. Progress in Organic Coatings, 2018, 122, 290-301.	1.9	19
77	Photoluminescence enhancement in metallic nanocomposite printable polymer. Journal of Vacuum Science & Technology B, 2007, 25, 2642.	1.3	18
78	Two-Dimensional Plasmonic Superlattice Based on Au Nanoparticles Self-Assembling onto a Functionalized Substrate. Journal of Physical Chemistry C, 2014, 118, 7579-7590.	1.5	18
79	Cytotoxicity Study on Luminescent Nanocrystals Containing Phospholipid Micelles in Primary Cultures of Rat Astrocytes. PLoS ONE, 2016, 11, e0153451.	1.1	18
80	Enhanced photoactivity and conductivity in transparent TiO ₂ nanocrystals/graphene hybrid anodes. Journal of Materials Chemistry A, 2017, 5, 9307-9315.	5 . 2	18
81	Shape Tailoring of Iodineâ€Based Cesium Lead Halide Perovskite Nanocrystals in Hotâ€Injection Methods. ChemNanoMat, 2020, 6, 356-361.	1.5	18
82	Excitation-Dependent Ultrafast Carrier Dynamics of Colloidal TiO ₂ Nanorods in Organic Solvent. Journal of Physical Chemistry C, 2014, 118, 25215-25222.	1.5	17
83	Lipid-based systems loaded with PbS nanocrystals: near infrared emitting trackable nanovectors. Journal of Materials Chemistry B, 2017, 5, 1471-1481.	2.9	17
84	Colloidal Nanocrystalline Semiconductor Materials as Photocatalysts for Environmental Protection of Architectural Stone. Crystals, 2017, 7, 30.	1.0	17
85	Highâ€Efficiency FRET Processes in BODIPYâ€Functionalized Quantum Dot Architectures. Chemistry - A European Journal, 2021, 27, 2371-2380.	1.7	17
86	Multifunctional TiO 2 /Fe \times O y /Ag based nanocrystalline heterostructures for photocatalytic degradation of a recalcitrant pollutant. Catalysis Today, 2017, 284, 100-106.	2.2	16
87	A new route for the shape differentiation of cesium lead bromide perovskite nanocrystals with near-unity photoluminescence quantum yield. Nanoscale, 2020, 12, 17053-17063.	2.8	16
88	Coupling effects in QD dimers at sub-nanometer interparticle distance. Nano Research, 2020, 13, 1071-1080.	5.8	16
89	Cyclodextrin mediated phase transfer in water of organic capped CdS nanocrystals. Synthetic Metals, 2005, 148, 43-46.	2.1	15
90	Interactions between surfactant capped CdS nanocrystals and organic solvent. Journal of Thermal Analysis and Calorimetry, 2008, 92, 271-277.	2.0	15

#	Article	IF	CITATIONS
91	Poly(methyl methacrylate) nanocomposites based on TiO2 nanocrystals: Tailoring material properties towards sensing. Thin Solid Films, 2011, 519, 3931-3938.	0.8	15
92	Photolithography based on nanocrystals. Science, 2017, 357, 353-354.	6.0	15
93	Green Fluorescent Terbium (III) Complex Doped Silica Nanoparticles. International Journal of Molecular Sciences, 2019, 20, 3139.	1.8	15
94	Low Temperature Synthesis of Photocatalytic Mesoporous TiO2 Nanomaterials. Catalysts, 2020, 10, 893.	1.6	15
95	Photochemical sensitisation process at photosynthetic pigments/Q-sized colloidal semiconductor hetero-junctions. Synthetic Metals, 2003, 139, 593-596.	2.1	14
96	Surface Functionalization of Epoxyâ€Resist―Based Microcantilevers with Iron Oxide Nanocrystals. Advanced Materials, 2010, 22, 3288-3292.	11.1	14
97	Interplay between Amplified Spontaneous Emission, Förster Resonant Energy Transfer, and Self-Absorption in Hybrid Poly(9,9-dioctylfluorene)-CdSe/ZnS Nanocrystal Thin Films. Journal of Physical Chemistry A, 2010, 114, 2086-2090.	1.1	14
98	Photocurrent generation in a CdS nanocrystals/poly[2-methoxy-5-(2′-ethyl-exyloxy)phenylene vinylene] electrochemical cell. Thin Solid Films, 2008, 516, 5010-5015.	0.8	13
99	Plasmon mediated super-absorber flexible nanocomposites for metamaterials. Nanoscale, 2013, 5, 6097.	2.8	13
100	Tuning light emission of PbS nanocrystals from infrared to visible range by cation exchange. Science and Technology of Advanced Materials, 2015, 16, 055007.	2.8	13
101	Assembly of Gold Nanorods for Highly Sensitive Detection of Mercury lons. IEEE Sensors Journal, 2013, 13, 2834-2841.	2.4	12
102	Optical and Conductive Properties of As-Synthesized Organic-Capped TiO2 Nanorods Highly Dispersible in Polystyrene-block-poly(methyl methacrylate) Diblock Copolymer. ACS Applied Materials & Samp; Interfaces, 2014, 6, 11805-11814.	4.0	12
103	Segmented poly(styrene-co-vinylpyridine) as multivalent host for CdSe nanocrystal based nanocomposites. European Polymer Journal, 2014, 60, 222-234.	2.6	12
104	Rod-coil block copolymer as nanostructuring compatibilizer for efficient CdSe NCs/PCPDTBT hybrid solar cells. European Polymer Journal, 2016, 78, 352-363.	2.6	12
105	Solvent dispersible nanocomposite based on Reduced Graphene Oxide and in-situ decorated gold nanoparticles. Carbon, 2019, 152, 777-787.	5.4	12
106	Structural Investigation of Three-Dimensional Self-Assembled PbS Binary Superlattices. Crystal Growth and Design, 2010, 10, 3770-3774.	1.4	11
107	Precision Patterning with Luminescent Nanocrystal-Functionalized Beads. Langmuir, 2010, 26, 14294-14300.	1.6	11
108	Surface chemical functionalization of single walled carbon nanotubes with a bacteriorhodopsin mutant. Nanoscale, 2012, 4, 6434.	2.8	11

#	Article	IF	CITATIONS
109	Metallic nanoparticles enhanced the spontaneous emission of semiconductor nanocrystals embedded in nanoimprinted photonic crystals. Nanoscale, 2013, 5, 239-245.	2.8	11
110	Transforming anatase TiO2 nanorods into ultrafine nanoparticles for advanced electrochemical performance. Journal of Power Sources, 2015, 294, 406-413.	4.0	11
111	Imaging modification of colon carcinoma cells exposed to lipid based nanovectors for drug delivery: a scanning electron microscopy investigation. RSC Advances, 2019, 9, 21810-21825.	1.7	11
112	Encapsulation of Dual Emitting Giant Quantum Dots in Silica Nanoparticles for Optical Ratiometric Temperature Nanosensors. Applied Sciences (Switzerland), 2020, 10, 2767.	1.3	11
113	Polyelectrolyte Multilayers As a Platform for Luminescent Nanocrystal Patterned Assemblies. Langmuir, 2012, 28, 5964-5974.	1.6	10
114	Nanocomposites based on highly luminescent nanocrystals and semiconducting conjugated polymer for inkjet printing. Nanotechnology, 2012, 23, 075701.	1.3	10
115	Photostable carbon dots with intense green emission in an open reactor synthesis. Carbon, 2022, 198, 230-243.	5.4	10
116	Meso-Crystallographic Study of a Three-Dimensional Self-Assembled Bimodal Nanocrystal Superlattice. Crystal Growth and Design, 2012, 12, 1970-1976.	1.4	9
117	Near-Infrared Absorbing Solid Lipid Nanoparticles Encapsulating Plasmonic Copper Sulfide Nanocrystals. Journal of Physical Chemistry C, 2019, 123, 23205-23213.	1.5	9
118	Oil-Dispersible Green-Emitting Carbon Dots: New Insights on a Facile and Efficient Synthesis. Materials, 2020, 13, 3716.	1.3	9
119	Size-tunable and stable cesium lead-bromide perovskite nanocubes with near-unity photoluminescence quantum yield. Nanoscale Advances, 2021, 3, 3918-3928.	2.2	9
120	Luminescent PLGA Nanoparticles for Delivery of Darunavir to the Brain and Inhibition of Matrix Metalloproteinase-9, a Relevant Therapeutic Target of HIV-Associated Neurological Disorders. ACS Chemical Neuroscience, 2021, 12, 4286-4301.	1.7	9
121	Photoelectrochemical properties of ZnO nanocrystals/MEH-PPV composite: The effects of nanocrystals synthetic route, film deposition and electrolyte composition. Thin Solid Films, 2015, 595, 157-163.	0.8	8
122	Goldâ€Speckled SPION@SiO 2 Nanoparticles Decorated with Thiocarbohydrates for ASGPR1 Targeting: Towards HCC Dual Mode Imaging Potential Applications. Chemistry - A European Journal, 2020, 26, 11048-11059.	1.7	8
123	PbS nanocrystals decorated Reduced Graphene Oxide for NIR responsive capacitive cathodes. Carbon, 2021, 182, 57-69.	5.4	8
124	Photoelectrochemical properties of hybrid junctions based on zinc phthalocyanine and semiconducting colloidal nanocrystals. Electrochimica Acta, 2006, 51, 5120-5124.	2.6	7
125	Oxide nanocrystal based nanocomposites for fabricating photoplastic AFM probes. Nanoscale, 2011, 3, 4632.	2.8	7
126	Phase Transfer of CdS Nanocrystals Mediated by Heptamine \hat{l}^2 -Cyclodextrin. Langmuir, 2012, 28, 8711-8720.	1.6	7

#	Article	IF	Citations
127	Three-Dimensional Self-Assembly of Networked Branched TiO2 Nanocrystal Scaffolds for Efficient Room-Temperature Processed Depleted Bulk Heterojunction Solar Cells. ACS Applied Materials & Lamp; Interfaces, 2014, 6, 5026-5033.	4.0	7
128	DPD Simulations of PMMAâ€Oleic Acid Mixture Behaviour in Organic Capped Nanoparticle Based Polymer Nanocomposite. Macromolecular Symposia, 2009, 286, 156-163.	0.4	6
129	Thermal properties and electric modulus approach to the analysis of dielectric relaxation of nanocomposites based on carbon dots. Polymer Composites, 2019, 40, 4650-4657.	2.3	6
130	CsPbBr3 Nanocrystals-Based Polymer Nanocomposite Films: Effect of Polymer on Spectroscopic Properties and Moisture Tolerance. Energies, 2020, 13, 6730.	1.6	6
131	Hybrid nanocomposites based on CdS and CdSe colloidal nanocrystals in organic polymers., 2005,,.		5
132	Modification of Spontaneous Emission of (CdSe)ZnS Nanocrystals Embedded in Nanoimprinted Photonic Crystals. Journal of Nanoscience and Nanotechnology, 2008, 8, 535-539.	0.9	5
133	Surface Functionalization of Micro Mechanical Cantilever Sensors by Organic Capped TiO2 and Fe2O3 Nanocrystals. Procedia Chemistry, 2009, 1, 32-35.	0.7	5
134	Chemically Directed Assembling of Functionalized Luminescent Nanocrystals onto Plasma Modified Substrates Towards Sensing and Optoelectronic Applications. Plasma Processes and Polymers, 2009, 6, S870.	1.6	5
135	Semiconductor nanocrystals dispersed in imidazolium-based ionic liquids: a spectroscopic and morphological investigation. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	5
136	Hybrid charge transfer complexes based on archaeal glycolipids wrapping single walled carbon nanotubes. Chemical Communications, 2013, 49, 6941.	2.2	5
137	Nanocomposites Based on Luminescent Colloidal Nanocrystals and Polymeric Ionic Liquids towards Optoelectronic Applications. Materials, 2014, 7, 591-610.	1.3	5
138	H-bonding driven assembly of colloidal Au nanoparticles on nanostructured poly(styrene-b-ethylene) Tj ETQq0 0 (O rgBT /Ov	erlock 10 Tf
139	Cu _{2â^'x} S nanocrystal synthesis: a chemical toolbox for controlling nanocrystal geometry, phase and plasmonic behavior. Materials Chemistry Frontiers, 2021, 5, 1341-1354.	3.2	5
140	Coupling in quantum dot molecular hetero-assemblies. Materials Research Bulletin, 2022, 146, 111578.	2.7	5
141	π–π Interactions Mediated Pyrene Based Ligand Enhanced Photoresponse in Hybrid Graphene/PbS Quantum Dots Photodetectors. Advanced Electronic Materials, 2022, 8, 2100672.	2.6	5
142	Hybrid Nanocomposites Based on Luminescent Colloidal Nanocrystals in Poly(methyl methacrylate): Spectroscopical and Morphological Studies. Journal of Nanoscience and Nanotechnology, 2008, 8, 628-634.	0.9	4
143	Functionalized luminescent nanocrystals on patterned surfaces obtained by radio frequency glow discharges. Nanotechnology, 2013, 24, 145302.	1.3	4
144	Effect of Iron Oxide Nanocrystal Content on the Morphology and Magnetic Properties of Polystyrene- <i>block</i> poly(methyl methacrylate) Diblock Copolymer Based Nanocomposites. Journal of Physical Chemistry C, 2015, 119, 6435-6445.	1.5	4

#	Article	IF	CITATIONS
145	TiO 2 Nanocrystals Decorated CVD Graphene Based Hybrid for UV-Light Active Photoanodes. Procedia Engineering, 2016, 168, 396-402.	1.2	4
146	Recombination Dynamics of Colloidal Nanocrystals in Functionalized-Poly-Methylmethacrylate Nanocomposites. Nanoscience and Nanotechnology Letters, 2015, 7, 67-73.	0.4	4
147	Patterned assembly of luminescent nanocrystals: role of the molecular chemistry at the interface. Journal of Nanoparticle Research, 2014, 16 , 1 .	0.8	3
148	Optical properties of nanocomposites based on (CdSe)ZnS core shell nanocrystals in cyclic olefin copolymer. Synthetic Metals, 2018, 245, 121-126.	2.1	3
149	Tuning Quantum Dots Coupling Using Organic Linkers with Different Vibrational Modes. Journal of Physical Chemistry C, 2020, 124, 16159-16165.	1.5	3
150	Water phase transfer of oleic capped semiconductor nanocrystals mediated by \hat{l}_{\pm} -cyclodextrins., 2005,,		2
151	Magnetic Nanocrystals Modified Epoxy Photoresist for Microfabrication of AFM probes. Procedia Chemistry, 2009, 1, 580-584.	0.7	2
152	Space resolved relaxation dynamics of poly(vinyl acetate) close to interfaces with SiOx nanoinclusions. AIP Conference Proceedings, 2012, , .	0.3	2
153	Morphological Study of CdSe Nanocrystals Passivated with a Low Band Gap Rod-Coil Diblock Copolymer for Hybrid Solar Cells. Advances in Science and Technology, 0, , .	0.2	2
154	Photocatalytic Application of Ag/TiO2 Hybrid Nanoparticles. , 2019, , 373-394.		2
155	PbS Quantum Dots Decorating TiO2 Nanocrystals: Synthesis, Topology, and Optical Properties of the Colloidal Hybrid Architecture. Molecules, 2020, 25, 2939.	1.7	2
156	Surface Functionalized Luminescent Nanocrystals Electrostatically Assembled onto a Patterned Substrate. Current Nanoscience, 2016, 12, 386-395.	0.7	2
157	Hot electron distribution in quantum cascade and single stage GaAs/AlGaAs periodic superlattice structures. Optical Materials, 2001, 17, 223-225.	1.7	1
158	Nanocrystal-Based Polymer Composites as Novel Functional Materials., 2009,, 173-192.		1
159	Colloidal chemistry routes for fabrication of nanoparticle-based metamaterials. Proceedings of SPIE, 2010, , .	0.8	1
160	Conjugated Polymer and Luminescent Nanocrystals for Ink-Jet Printing. , 2010, , .		1
161	Au Based Nanocomposites Towards Plasmonic Applications. , 2010, , .		1
162	Towards individual electrical contact of nanoparticles in nanocomposites. Microelectronic Engineering, 2011, 88, 2439-2443.	1.1	1

#	Article	IF	Citations
163	7. Characterization of inorganic nanostructured materials by electron microscopy. , 0, , .		1
164	Drug delivery nanovectors based on SPIONS for targeted therapy of hepatocellular carcinoma. , 2017, , .		1
165	Micropatterning of Plastic Nanocomposite Films: Effect of Au Nanoparticle Content. Science of Advanced Materials, 2014, 6, 505-512.	0.1	1
166	Electrical Properties in PMMA/Carbon-Dots Nanocomposite Films Below the Percolation Threshold. NATO Science for Peace and Security Series B: Physics and Biophysics, 2020, , 235-250.	0.2	1
167	Miniband electronic distribution in superlattice quantum cascade structures. , 2000, , .		0
168	Nanoimprinted photonic component for light extraction applications. , 2007, , .		0
169	Investigation of morphology of nanocrystal based nanocomposites. Theoretical and computational analysis. AIP Conference Proceedings, 2008, , .	0.3	0
170	Enhanced photoluminescence from metals and nanoimprinted photonic crystals., 2009,,.		0
171	Enhanced extraction efficiency in nanoimprinted light emitting structures mediated by plasmon-exciton interaction. , 2011, , .		O
172	Surface chemical functionalization of single walled carbon nanotubes by mutated Bacteriorhodops in towards sensing applications. , 2011, , .		0
173	Assembly of gold nanorods for highly sensitive detection of heavy metals. , 2012, , .		O
174	Surface chemical functionalisation of epoxy photoresist-based microcantilevers with organic-coated TiO2 nanocrystals. Micro and Nano Letters, 2012, 7, 337.	0.6	0
175	TiO ₂ nanocrystals decorated CVD graphene for electroanalytical sensing., 2017,,.		0
176	An n-Bit Adder Realized via Coherent Optical Parallel Computing. , 2019, , .		0
177	Luminescent Polymeric Nanovectors Loaded with Darunavir for Treatment of HIV-Associated Neurological Diseases. NATO Science for Peace and Security Series A: Chemistry and Biology, 2020, , 255-256.	0.5	0
178	Optical Properties Of (CdSe)ZnS/Thermoplastic Polymer Nanocomposites., 0,, 313-320.		0