Mariana Roriz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4964808/publications.pdf

Version: 2024-02-01

840776 1125743 13 559 11 13 citations h-index g-index papers 14 14 14 900 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Chemical composition of red, brown and green macroalgae from Buarcos bay in Central West Coast of Portugal. Food Chemistry, 2015, 183, 197-207.	8.2	241
2	Chemical composition and nutritive value of Pleurotus citrinopileatus var cornucopiae, P. eryngii, P. salmoneo stramineus, Pholiota nameko and Hericium erinaceus. Journal of Food Science and Technology, 2015, 52, 6927-6939.	2.8	42
3	Iron partitioning at an early growth stage impacts iron deficiency responses in soybean plants (Glycine max L.). Frontiers in Plant Science, 2015, 6, 325.	3.6	40
4	Understanding the Role of the Antioxidant System and the Tetrapyrrole Cycle in Iron Deficiency Chlorosis. Plants, 2019, 8, 348.	3.5	40
5	High relative air humidity influences mineral accumulation and growth in iron deficient soybean plants. Frontiers in Plant Science, 2014, 5, 726.	3.6	34
6	Legume Biofortification and the Role of Plant Growth-Promoting Bacteria in a Sustainable Agricultural Era. Agronomy, 2020, 10, 435.	3.0	30
7	Effect of tris(3-hydroxy-4-pyridinonate) iron(III) complexes on iron uptake and storage in soybean (Glycine max L.). Plant Physiology and Biochemistry, 2016, 106, 91-100.	5.8	27
8	Population dynamics of bacteria associated with different strains of the pine wood nematode Bursaphelenchus xylophilus after inoculation in maritime pine (Pinus pinaster). Experimental Parasitology, 2011, 128, 357-364.	1.2	25
9	Conventional and novel approaches for managing "flavescence dorée―in grapevine: knowledge gaps and future prospects. Plant Pathology, 2019, 68, 3-17.	2.4	21
10	Study of the proximate and mineral composition of different Nigerian yam chips, flakes and flours. Journal of Food Science and Technology, 2018, 55, 42-51.	2.8	18
11	Safety of Yam-Derived (Dioscorea rotundata) Foodstuffsâ€"Chips, Flakes and Flour: Effect of Processing and Post-Processing Conditions. Foods, 2019, 8, 12.	4.3	17
12	Iron metabolism in soybean grown in calcareous soil is influenced by plant growth-promoting rhizobacteria – A functional analysis. Rhizosphere, 2021, 17, 100274.	3.0	10
13	Study of symptoms and gene expression in four <i>Pinus</i> species after pinewood nematode infection. Plant Genetic Resources: Characterisation and Utilisation, 2011, 9, 272-275.	0.8	7