MaÅ,gorzata Jurak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4964785/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Influence of Polysaccharides/TiO2 on the Model Membranes of Dipalmitoylphosphatidylglycerol and Bacterial Lipids. Molecules, 2022, 27, 343.	1.7	7
2	The human LL-37 peptide exerts antimicrobial activity against Legionella micdadei interacting with membrane phospholipids. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2022, 1867, 159138.	1.2	6
3	The effect of chitosan/TiO2/hyaluronic acid subphase on the behaviour of 1,2-dioleoyl-sn-glycero-3-phosphocholine membrane. , 2022, , 212934.		3
4	Characteristics of hybrid chitosan/phospholipid-sterol, peptide coatings on plasma activated PEEK polymer. Materials Science and Engineering C, 2021, 120, 111658.	3.8	22
5	Analysis of Molecular Interactions between Components in Phospholipid-Immunosuppressant-Antioxidant Mixed Langmuir Films. Langmuir, 2021, 37, 5601-5616.	1.6	32
6	What affects the biocompatibility of polymers?. Advances in Colloid and Interface Science, 2021, 294, 102451.	7.0	89
7	Physicochemical characteristics of chitosan-TiO2 biomaterial. 2. Wettability and biocompatibility. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630, 127546.	2.3	11
8	Cyclosporine CsA—The Physicochemical Characterization of Liposomal and Colloidal Systems. Colloids and Interfaces, 2020, 4, 46.	0.9	11
9	CHARACTERIZATION OF MIXED LANGMUIR MONOLAYERS OF CYCLOSPORINE A WITH THE PHOSPHOLIPID DPPC AT THE CHITOSAN SUBPHASE. Progress on Chemistry and Application of Chitin and Its Derivatives, 2020, XXV, 227-235.	0.1	0
10	Characteristics of Polypeptide/Phospholipid Monolayers on Water and the Plasmaâ€Activated Polyetheretherketone Support. Journal of Surfactants and Detergents, 2019, 22, 1213-1228.	1.0	11
11	Structure and wettability of heterogeneous monomolecular films of phospholipids with cholesterol or lauryl gallate. Applied Surface Science, 2019, 493, 1021-1031.	3.1	4
12	Properties of the Langmuir and Langmuir–Blodgett monolayers of cholesterol-cyclosporine A on water and polymer support. Adsorption, 2019, 25, 923-936.	1.4	33
13	Wetting Properties of Polyetheretherketone Plasma Activated and Biocoated Surfaces. Colloids and Interfaces, 2019, 3, 40.	0.9	14
14	Temperature-dependent interactions in the chitosan/cyclosporine A system at liquid–air interface. Journal of Thermal Analysis and Calorimetry, 2019, 138, 4513-4521.	2.0	5
15	Langmuir monolayer study of phospholipid DPPC on the titanium dioxide–chitosan–hyaluronic acid subphases. Adsorption, 2019, 25, 469-476.	1.4	28
16	Wettability of DPPC Monolayers Deposited from the Titanium Dioxide–Chitosan–Hyaluronic Acid Subphases on Glass. Colloids and Interfaces, 2019, 3, 15.	0.9	12
17	WETTABILITY OF CHITOSAN-MODIFIED AND LIPID/POLYPEPTIDE-COATED PEEK SURFACES. Progress on Chemistry and Application of Chitin and Its Derivatives, 2019, XXIV, 172-182.	0.1	2
18	SURFACE CHARACTERISTICS OF DPPC MONOLAYERS DEPOSITED FROM TITANIUM DIOXIDE–CHITOSAN–HYALURONIC ACID SUBPHASES ON A GLASS SUPPORT. Progress on Chemistry and Application of Chitin and Its Derivatives, 2019, XXIV, 106-118.	0.1	2

MaÅ,gorzata Jurak

#	Article	IF	CITATIONS
19	Properties of Artificial Phospholipid Membranes Containing Lauryl Gallate or Cholesterol. Journal of Membrane Biology, 2018, 251, 277-294.	1.0	22
20	Physicochemical Characteristics of Chitosan–TiO ₂ Biomaterial. 1. Stability and Swelling Properties. Industrial & Engineering Chemistry Research, 2018, 57, 1859-1870.	1.8	48
21	Wettability of plasma modified glass surface with bioglass layer in polysaccharide solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 551, 185-194.	2.3	19
22	Influence of nitrogen plasma treatment on the wettability of polyetheretherketone and deposited chitosan layers. Advances in Polymer Technology, 2018, 37, 1557-1569.	0.8	36
23	WETTING PROPERTIES OF CHITOSAN-MODIFIED AND PLASMA-TREATED PEEK SURFACES. Progress on Chemistry and Application of Chitin and Its Derivatives, 2018, XXIII, 159-169.	0.1	1
24	Interfacial properties of PET and PET/starch polymers developed by air plasma processing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532, 323-331.	2.3	28
25	Chitosan/phospholipid coated polyethylene terephthalate (PET) polymer surfaces activated by air plasma. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532, 155-164.	2.3	32
26	WETTABILITY OF HYBRID CHITOSAN/PHOSPHOLIPID COATINGS. Progress on Chemistry and Application of Chitin and Its Derivatives, 2017, XXII, 66-76.	0.1	1
27	Low-temperature air plasma modification of chitosan-coated PEEK biomaterials. Polymer Testing, 2016, 50, 325-334.	2.3	37
28	Surface free energy of organized phospholipid/lauryl gallate monolayers on mica. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 510, 213-220.	2.3	6
29	Properties of PEEK-supported films of biological substances prepared by the Langmuir-Blodgett technique. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 510, 263-274.	2.3	22
30	Interactions of lauryl gallate with phospholipid components of biological membranes. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1821-1832.	1.4	26
31	Effect of Lauryl Gallate on Wetting Properties of Organized Thin Phospholipid Films on Mica. Journal of Physical Chemistry B, 2016, 120, 6657-6666.	1.2	4
32	Effect of low-temperature plasma on chitosan-coated PEEK polymer characteristics. European Polymer Journal, 2016, 78, 1-13.	2.6	45
33	Wettability of Binary Solid-Supported Films of Zwitterionic/Anionic Phospholipids. Adsorption Science and Technology, 2015, 33, 625-638.	1.5	0
34	Contact angle hysteresis and phase separation in dry phospholipid films with cholesterol deposited on mica surface. Applied Surface Science, 2015, 328, 596-605.	3.1	15
35	Effect of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and phospholipase A2 (PLA2) on surface properties of silica materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 480, 360-368.	2.3	3
36	Properties of Langmuir and solid supported lipid films with sphingomyelin. Advances in Colloid and Interface Science, 2015, 222, 385-397.	7.0	22

MaÅ,gorzata Jurak

#	Article	IF	CITATIONS
37	Wetting properties of model biological membranes. Current Opinion in Colloid and Interface Science, 2014, 19, 368-380.	3.4	19
38	Surface Gibbs energy interaction of phospholipid/cholesterol monolayers deposited on mica with probe liquids. Chemistry and Physics of Lipids, 2014, 183, 60-67.	1.5	2
39	Wettability of Solid-Supported Lipid Layers. , 2014, , 121-148.		0
40	Thermodynamic Aspects of Cholesterol Effect on Properties of Phospholipid Monolayers: Langmuir and Langmuir–Blodgett Monolayer Study. Journal of Physical Chemistry B, 2013, 117, 3496-3502.	1.2	91
41	Characterization of the binary mixed monolayers of α-tocopherol with phospholipids at the air-water interface. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2410-2418.	1.4	30
42	Physicochemical properties of phospholipid model membranes hydrolyzed by phospholipase A2 (PLA2) in the presence of cholesterol at different temperatures. Applied Surface Science, 2013, 266, 426-432.	3.1	6
43	Comparison of contact angle hysteresis of different probe liquids on the same solid surface. Colloid and Polymer Science, 2013, 291, 391-399.	1.0	38
44	Changes in stability of the DPPC monolayer during its contact with the liquid phase. Chemistry and Physics of Lipids, 2012, 165, 302-310.	1.5	8
45	Interaction energy of model lipid membranes with water and diiodomethane. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 383, 56-60.	2.3	15
46	Influence of (phospho)lipases on properties of mica supported phospholipid layers. Applied Surface Science, 2010, 256, 6304-6312.	3.1	16
47	Surface free energy and topography of mixed lipid layers on mica. Colloids and Surfaces B: Biointerfaces, 2010, 75, 165-174.	2.5	26
48	Zeta potential and surface free energy changes of solid-supported phospholipid (DPPC) layers caused by the enzyme phospholipase A2 (PLA2). Adsorption, 2009, 15, 211-219.	1.4	14
49	Effect of a lipolytic enzyme on wettability and topography of phospholipid layers deposited on solid support. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 321, 131-136.	2.3	17
50	Wettability and Topography of Phospholipid DPPC Multilayers Deposited by Spin-Coating on Glass, Silicon, and Mica Slides. Langmuir, 2007, 23, 10156-10163.	1.6	35
51	Topography and Surface Free Energy of DPPC Layers Deposited on a Glass, Mica, or PMMA Support. Langmuir, 2006, 22, 7226-7234.	1.6	24