Elena S Martens-Uzunova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4963618/publications.pdf

Version: 2024-02-01

26 papers 9,208 citations

430442 18 h-index 25 g-index

26 all docs

26 docs citations

26 times ranked

15214 citing authors

#	Article	IF	CITATIONS
1	Extracellular vesicles as a source of prostate cancer biomarkers in liquid biopsies: a decade of research. British Journal of Cancer, 2022, 126, 331-350.	2.9	39
2	Extracellular Vesicles as Novel Players in Kidney Disease. Journal of the American Society of Nephrology: JASN, 2022, 33, 467-471.	3.0	6
3	CRISPRs in the human genome are differentially expressed between malignant and normalÂadjacent to tumor tissue. Communications Biology, 2022, 5, 338.	2.0	2
4	Urinary extracellular vesicles: A position paper by the Urine Task Force of the International Society for Extracellular Vesicles. Journal of Extracellular Vesicles, 2021, 10, e12093.	5 . 5	182
5	Androgens alter the heterogeneity of small extracellular vesicles and the small RNA cargo in prostate cancer. Journal of Extracellular Vesicles, 2021, 10, e12136.	5 . 5	15
6	Urinary Extracellular Vesicles in Urology: Current Successes and Challenges Ahead. European Urology, 2021, 81, 127-127.	0.9	0
7	The role of OncoSnoRNAs and Ribosomal RNA 2'-O-methylation in Cancer. RNA Biology, 2021, 18, 61-74.	1.5	21
8	VIRMA-Dependent N6-Methyladenosine Modifications Regulate the Expression of Long Non-Coding RNAs CCAT1 and CCAT2 in Prostate Cancer. Cancers, 2020, 12, 771.	1.7	59
9	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	5 . 5	6,961
10	Summary of the ISEV workshop on extracellular vesicles as disease biomarkers, held in Birmingham, UK, during December 2017. Journal of Extracellular Vesicles, 2018, 7, 1473707.	5 . 5	60
11	The Non-Coding Transcriptome of Prostate Cancer: Implications for Clinical Practice. Molecular Diagnosis and Therapy, 2017, 21, 385-400.	1.6	18
12	Systematic Identification of MicroRNAs That Impact on Proliferation of Prostate Cancer Cells and Display Changed Expression in Tumor Tissue. European Urology, 2016, 69, 1120-1128.	0.9	53
13	A comprehensive repertoire of tRNA-derived fragments in prostate cancer. Oncotarget, 2016, 7, 24766-24777.	0.8	144
14	Identification and Diagnostic Performance of a Small RNA within the PCA3 and BMCC1 Gene Locus That Potentially Targets mRNA. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 268-275.	1.1	10
15	FlaiMapper: computational annotation of small ncRNA-derived fragments using RNA-seq high-throughput data. Bioinformatics, 2015, 31, 665-673.	1.8	28
16	C/D-box snoRNA-derived RNA production is associated with malignant transformation and metastatic progression in prostate cancer. Oncotarget, 2015, 6, 17430-17444.	0.8	80
17	Long Noncoding RNA in Prostate, Bladder, and Kidney Cancer. European Urology, 2014, 65, 1140-1151.	0.9	601
18	miQ—A novel microRNA based diagnostic and prognostic tool for prostate cancer. International Journal of Cancer, 2013, 132, 2867-2875.	2.3	79

#	Article	IF	CITATIONS
19	Beyond microRNA – Novel RNAs derived from small non-coding RNA and their implication in cancer. Cancer Letters, 2013, 340, 201-211.	3.2	169
20	Diagnostic and prognostic signatures from the small non-coding RNA transcriptome in prostate cancer. Oncogene, 2012, 31, 978-991.	2.6	239
21	miR-183-96-182 Cluster Is Overexpressed in Prostate Tissue and Regulates Zinc Homeostasis in Prostate Cells. Journal of Biological Chemistry, 2011, 286, 44503-44511.	1.6	120
22	An inventory of the Aspergillus niger secretome by combining in silico predictions with shotgun proteomics data. BMC Genomics, 2010, 11, 584.	1.2	74
23	Assessment of the pectin degrading enzyme network of Aspergillus niger by functional genomics. Fungal Genetics and Biology, 2009, 46, S170-S179.	0.9	102
24	An evolutionary conserved d-galacturonic acid metabolic pathway operates across filamentous fungi capable of pectin degradation. Fungal Genetics and Biology, 2008, 45, 1449-1457.	0.9	74
25	Carboxy-Terminal Extension Effects on Crystal Formation and Insecticidal Properties of Colorado Potato Beetle-Active Bacillus thuringiensis δ-Endotoxins. Molecular Biotechnology, 2006, 32, 185-196.	1.3	10
26	A new group of exo-acting family 28 glycoside hydrolases of Aspergillus niger that are involved in pectin degradation. Biochemical Journal, 2006, 400, 43-52.	1.7	62