Sun-Lin Chung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4963229/publications.pdf

Version: 2024-02-01

263 papers

27,341 citations

4146 87 h-index 159 g-index

274 all docs

274 docs citations

times ranked

274

7342 citing authors

#	Article	IF	CITATIONS
1	Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 2005, 68, 173-196.	9.1	1,197
2	The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 2011, 301, 241-255.	4.4	1,096
3	Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 2003, 31, 1021.	4.4	948
4	The amount of recycled crust in sources of mantle-derived melts. Science, 2007, 316, 412-7.	12.6	822
5	Zircon U–Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology, 2009, 262, 229-245.	3.3	793
6	Petrologic and geochemical constraints on the petrogenesis of Permian–Triassic Emeishan flood basalts in southwestern China. Lithos, 2001, 58, 145-168.	1.4	785
7	Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary. Geology, 1995, 23, 889.	4.4	525
8	Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology, 2006, 34, 745.	4.4	513
9	Diachronous uplift of the Tibetan plateau starting 40?Myr ago. Nature, 1998, 394, 769-773.	27.8	509
10	A hybrid origin for the Qianshan A-type granite, northeast China: Geochemical and Sr–Nd–Hf isotopic evidence. Lithos, 2006, 89, 89-106.	1.4	483
11	The Amount of Recycled Crust in Sources of Mantle-Derived Melts. Science, 2007, 316, 412-417.	12.6	470
12	Zircon SHRIMP U–Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet. Chemical Geology, 2008, 252, 191-201.	3.3	427
13	Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood-basalt province. Geology, 2004, 32, 917.	4.4	405
14	The nature and timing of crustal thickening in Southern Tibet: Geochemical and zircon Hf isotopic constraints from postcollisional adakites. Tectonophysics, 2009, 477, 36-48.	2.2	373
15	Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc: Implications for the evolution of a young, intracontinental back arc basin. Journal of Geophysical Research, 1999, 104, 10591-10608.	3.3	368
16	Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China: geochronological, geochemical and Nd–Sr isotopic evidence. Chemical Geology, 2005, 214, 99-125.	3.3	355
17	Zircon U–Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos, 2013, 162-163, 70-87.	1.4	343
18	Intraplate extension prior to continental extrusion along the Ailao Shan-Red River shear zone. Geology, 1997, 25, 311.	4.4	336

#	Article	IF	CITATIONS
19	Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record. Tectonophysics, 2009, 477, 20-35.	2.2	329
20	Magmatic record of India-Asia collision. Scientific Reports, 2015, 5, 14289.	3.3	316
21	SHRIMP Zircon Age and Geochemical Constraints on the Origin of Lower Jurassic Volcanic Rocks from the Yeba Formation, Southern Gangdese, South Tibet. International Geology Review, 2008, 50, 442-471.	2.1	312
22	Detrital zircon U–Pb and Hf isotopic data from the Xigaze fore-arc basin: Constraints on Transhimalayan magmatic evolution in southern Tibet. Chemical Geology, 2010, 271, 13-25.	3.3	308
23	Magmatic switch-on and switch-off along the South China continental margin since the Permian: Transition from an Andean-type to a Western Pacific-type plate boundary. Tectonophysics, 2012, 532-535, 271-290.	2.2	307
24	Zircon U–Pb and Hf isotopic constraints from eastern Transhimalayan batholiths on the precollisional magmatic and tectonic evolution in southern Tibet. Tectonophysics, 2009, 477, 3-19.	2.2	306
25	Geochemistry of the 755Ma Mundine Well dyke swarm, northwestern Australia: Part of a Neoproterozoic mantle superplume beneath Rodinia?. Precambrian Research, 2006, 146, 1-15.	2.7	289
26	Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet: Petrogenesis and tectonic implications. Lithos, 2008, 105, 1-11.	1.4	262
27	Paleozoic tectonics of the southern Chinese Tianshan: Insights from structural, chronological and geochemical studies of the Heiyingshan ophiolitic mélange (NW China). Tectonophysics, 2011, 497, 85-104.	2.2	262
28	Zircon U–Pb ages in Myanmar: Magmatic–metamorphic events and the closure of a neo-Tethys ocean?. Journal of Asian Earth Sciences, 2012, 56, 1-23.	2.3	256
29	Evolution of the Bangong–Nujiang Tethyan ocean: Insights from the geochronology and geochemistry of mafic rocks within ophiolites. Lithos, 2016, 245, 18-33.	1.4	237
30	Geochemical and Sr–Nd–Pb isotopic compositions of mafic dikes from the Jiaodong Peninsula, China: evidence for vein-plus-peridotite melting in the lithospheric mantle. Lithos, 2004, 73, 145-160.	1.4	224
31	Apatite Composition: Tracing Petrogenetic Processes in Transhimalayan Granitoids. Journal of Petrology, 2009, 50, 1829-1855.	2.8	223
32	Crustal–lithospheric structure and continental extrusion of Tibet. Journal of the Geological Society, 2011, 168, 633-672.	2.1	221
33	The 132 Ma Comei-Bunbury large igneous province: Remnants identified in present-day southeastern Tibet and southwestern Australia. Geology, 2009, 37, 583-586.	4.4	219
34	Tectonic evolution of the Sibumasu–Indochina terrane collision zone in Thailand and Malaysia: constraints from new U–Pb zircon chronology of SE Asian tin granitoids. Journal of the Geological Society, 2012, 169, 489-500.	2.1	216
35	Zircon U-Pb and Hf isotopic constraints on the onset time of India-Asia collision. Numerische Mathematik, 2014, 314, 548-579.	1.4	203
36	The genetic association of adakites and Cu–Au ore deposits. International Geology Review, 2011, 53, 691-703.	2.1	202

#	Article	IF	Citations
37	Age of the Emeishan flood magmatism and relations to Permian–Triassic boundary events. Earth and Planetary Science Letters, 2002, 198, 449-458.	4.4	195
38	Rapid exhumation and cooling of the Liaonan metamorphic core complex: Inferences from 40Ar/39Ar thermochronology and implications for Late Mesozoic extension in the eastern North China Craton. Bulletin of the Geological Society of America, 2007, 119, 1405-1414.	3.3	193
39	India's hidden inputs to Tibetan orogeny revealed by Hf isotopes of Transhimalayan zircons and host rocks. Earth and Planetary Science Letters, 2011, 307, 479-486.	4.4	192
40	Multiple sources for the origin of granites: Geochemical and Nd/Sr isotopic evidence from the Gudaoling granite and its mafic enclaves, northeast China. Geochimica Et Cosmochimica Acta, 2004, 68, 4469-4483.	3.9	188
41	Geochemical and Sr–Nd isotopic constraints on the genesis of the Cenozoic Linzizong volcanic successions, southern Tibet. Journal of Asian Earth Sciences, 2012, 53, 96-114.	2.3	172
42	Late Cenozoic basaltic volcanism around the Taiwan Strait, SE China: Product of lithosphere-asthenosphere interaction during continental extension. Chemical Geology, 1994, 112, 1-20.	3.3	171
43	Tethyan suturing in Southeast Asia: Zircon U-Pb and Hf-O isotopic constraints from Myanmar ophiolites. Geology, 2016, 44, 311-314.	4.4	171
44	Structural constraints on the timing of left-lateral shear along the Red River shear zone in the Ailao Shan and Diancang Shan Ranges, Yunnan, SW China. , 2010, 6, 316-338.		167
45	Geochemical Constraints for the Genesis of Post-collisional Magmatism and the Geodynamic Evolution of the Northern Taiwan Region. Journal of Petrology, 2004, 45, 975-1011.	2.8	161
46	Formation of the Jinchuan ultramafic intrusion and the world's third largest Ni-Cu sulfide deposit: Associated with the â^1⁄4825 Ma south China mantle plume?. Geochemistry, Geophysics, Geosystems, 2005, 6, n/a-n/a.	2.5	160
47	Early Eocene crustal thickening in southern Tibet: New age and geochemical constraints from the Gangdese batholith. Journal of Asian Earth Sciences, 2012, 53, 82-95.	2.3	160
48	Oldest Paleo-Tethyan ophiolitic mélange in the Tibetan Plateau. Bulletin of the Geological Society of America, 2016, 128, 355-373.	3.3	154
49	Contrasting Cenozoic Lithospheric Evolution and Architecture in the Western and Eastern Sinoâ∈Korean Craton: Constraints from Geochemistry of Basalts and Mantle Xenoliths. Journal of Geology, 2004, 112, 593-605.	1.4	152
50	Silicic magmas from the Emeishan large igneous province, Southwest China: Petrogenesis and their link with the end-Guadalupian biological crisis. Lithos, 2010, 119, 47-60.	1.4	148
51	Eocene Neo-Tethyan slab breakoff constrained by 45 Ma oceanic island basalt–type magmatism in southern Tibet. Geology, 2016, 44, 283-286.	4.4	147
52	Thermochronological evidence for the movement of the Ailao Shan–Red River shear zone: A perspective from Vietnam. Geology, 1998, 26, 887.	4.4	145
53	Transition from shoshonitic to adakitic magmatism in the eastern Pontides, NE Turkey: Implications for slab window melting. Gondwana Research, 2011, 19, 413-429.	6.0	142
54	Geochemical and Sr–Nd isotopic constraints from the Kontum massif, central Vietnam on the crustal evolution of the Indochina block. Precambrian Research, 2003, 122, 7-27.	2.7	140

#	Article	IF	CITATIONS
55	Picrites from the Emeishan Large Igneous Province, SW China: a Compositional Continuum in Primitive Magmas and their Respective Mantle Sources. Journal of Petrology, 2012, 53, 2095-2113.	2.8	140
56	Geochronology and petrogenesis of granitic rocks in Gangdese batholith, southern Tibet. Science in China Series D: Earth Sciences, 2009, 52, 1240-1261.	0.9	137
57	Geochemical Constraints on Adakites of Different Origins and Copper Mineralization. Journal of Geology, 2012, 120, 105-120.	1.4	135
58	Early Cretaceous gabbroic complex from Yinan, Shandong Province: petrogenesis and mantle domains beneath the North China Craton. International Journal of Earth Sciences, 2004, 93, 1025-1041.	1.8	134
59	Jurassic intraplate magmatism in southern Hunan-eastern Guangxi: ₄₀ Ar/ ₃₉ Ar dating, geochemistry, Sr-Nd isotopes and implications for the tectonic evolution of SE China. Geological Society Special Publication, 2004, 226, 193-215.	1.3	133
60	Petrogenesis of Early Cretaceous intrusions in the Sulu ultrahigh-pressure orogenic belt, east China and their relationship to lithospheric thinning. Chemical Geology, 2005, 222, 200-231.	3.3	131
61	Early Neoproterozoic crustal evolution in northern Yili Block: Insights from migmatite, orthogneiss and leucogranite of the Wenquan metamorphic complex in the NW Chinese Tianshan. Precambrian Research, 2014, 242, 58-81.	2.7	127
62	Eoceneâ€"Oligocene post-collisional magmatism in the Lutâ€"Sistan region, eastern Iran: Magma genesis and tectonic implications. Lithos, 2013, 180-181, 234-251.	1.4	120
63	Trace Element and Isotope Characteristics of Cenozoic Basalts around the Tanlu Fault with Implications for the Eastern Plate Boundary between North and South China. Journal of Geology, 1999, 107, 301-312.	1.4	118
64	Onset timing of left-lateral movement along the Ailao Shan–Red River Shear Zone: 40Ar/39Ar dating constraint from the Nam Dinh Area, northeastern Vietnam. Journal of Asian Earth Sciences, 2000, 18, 281-292.	2.3	115
65	Chemostratigraphic Correlation of Upper Permian Lavas from Yunnan Province, China: Extent of the Emeishan Large Igneous Province. International Geology Review, 2003, 45, 753-766.	2.1	114
66	Post-collisional magmatism around northern Taiwan and its relation with opening of the Okinawa Trough. Tectonophysics, 1999, 308, 363-376.	2.2	110
67	Gangdese magmatism in southern Tibet and India–Asia convergence since 120 Ma. Geological Society Special Publication, 2019, 483, 583-604.	1.3	110
68	Miocene Jiali faulting and its implications for Tibetan tectonic evolution. Earth and Planetary Science Letters, 2003, 205, 185-194.	4.4	107
69	Origin and Tectonic Implication of Ophiolite and Eclogite in the Song Ma Suture Zone between the South China and Indochina Blocks. Journal of Metamorphic Geology, 2013, 31, 49-62.	3.4	106
70	Origin of the ca. 90 Ma magnesia-rich volcanic rocks in SE Nyima, central Tibet: Products of lithospheric delamination beneath the Lhasa-Qiangtang collision zone. Lithos, 2014, 198-199, 24-37.	1.4	106
71	Permo-Triassic intermediate–felsic magmatism of the Truong Son belt, eastern margin of Indochina. Comptes Rendus - Geoscience, 2008, 340, 112-126.	1.2	102
72	Eocene north–south trending dikes in central Tibet: New constraints on the timing of east–west extension with implications for early plateau uplift?. Earth and Planetary Science Letters, 2010, 298, 205-216.	4.4	101

#	Article	IF	Citations
73	Late Triassic high-Mg andesite/dacite suites from northern Hohxil, North Tibet: Geochronology, geochemical characteristics, petrogenetic processes and tectonic implications. Lithos, 2011, 126, 54-67.	1.4	100
74	Short episodes of crust generation during protracted accretionary processes: Evidence from Central Asian Orogenic Belt, NW China. Earth and Planetary Science Letters, 2017, 464, 142-154.	4.4	98
75	Major and trace element, and Sr-Nd isotope constraints on the origin of Paleogene volcanism in South China prior to the South China Sea opening. Lithos, 1997, 40, 203-220.	1.4	97
76	The Emeishan flood basalt in SW China: A mantle plume initiation model and its connection with continental breakup and mass extinction at the Permian-Triassic Boundary. Geodynamic Series, 1998, , 47-58.	0.1	97
77	Detrital zircon evidence from Burma for reorganization of the eastern Himalayan river system. Numerische Mathematik, 2008, 308, 618-638.	1.4	96
78	40Ar/39Ar dating of the Jiali and Gaoligong shear zones: Implications for crustal deformation around the Eastern Himalayan Syntaxis. Journal of Asian Earth Sciences, 2009, 34, 674-685.	2.3	95
79	The Gangdese magmatic constraints on a latest Cretaceous lithospheric delamination of the Lhasa terrane, southern Tibet. Lithos, 2014, 210-211, 168-180.	1.4	95
80	Miocene basalts in northwestern Taiwan: Evidence for EM-type mantle sources in the continental lithosphere. Geochimica Et Cosmochimica Acta, 1995, 59, 549-555.	3.9	93
81	Age, geochemical characteristics and petrogenesis of Late Cenozoic intraplate alkali basalts in the Lut–Sistan region, eastern Iran. Chemical Geology, 2012, 306-307, 40-53.	3.3	93
82	First evidence for Archean continental crust in northern Vietnam and its implications for crustal and tectonic evolution in Southeast Asia. Geology, 2001, 29, 219.	4.4	92
83	Zircon U–Pb and Hf isotope constraints from the Ailao Shan–Red River shear zone on the tectonic and crustal evolution of southwestern China. Chemical Geology, 2012, 291, 23-37.	3.3	91
84	Formation of Cretaceous Cordilleran and post-orogenic granites and their microgranular enclaves from the Dalat zone, southern Vietnam: Tectonic implications for the evolution of Southeast Asia. Lithos, 2013, 182-183, 229-241.	1.4	91
85	Geochemical and Sr–Nd isotopic characteristics of granitic rocks from northern Vietnam. Journal of Asian Earth Sciences, 2000, 18, 267-280.	2.3	90
86	Zircon U–Pb age and geochemical constraints on the origin of the Birjand ophiolite, Sistan suture zone, eastern Iran. Lithos, 2012, 154, 392-405.	1.4	90
87	Pliocene-Quaternary crustal melting in central and northern Tibet and insights into crustal flow. Nature Communications, 2016, 7, 11888.	12.8	90
88	Earlyâ€Middle Triassic high Sr/Y granitoids in the southern Central Asian Orogenic Belt: Implications for ocean closure in accretionary orogens. Journal of Geophysical Research: Solid Earth, 2017, 122, 2291-2309.	3.4	89
89	Crystal fractionation of adakitic magmas in the crust–mantle transition zone: Petrology, geochemistry and U–Pb zircon chronology of the Seme adakites, eastern Pontides, NE Turkey. Lithos, 2011, 121, 151-166.	1.4	88
90	Petrogenesis of Malaysian granitoids in the Southeast Asian tin belt: Part 2. U-Pb zircon geochronology and tectonic model. Bulletin of the Geological Society of America, 2015, 127, 1238-1258.	3.3	88

#	Article	IF	CITATIONS
91	Fragments of hot and metasomatized mantle lithosphere in Middle Miocene ultrapotassic lavas, southern Tibet. Geology, 2011, 39, 923-926.	4.4	87
92	Isotopic dating of the Khoy metamorphic complex (KMC), northwestern Iran: A significant revision of the formation age and magma source. Precambrian Research, 2011, 185, 87-94.	2.7	87
93	The Song Da magmatic suite revisited: A petrologic, geochemical and Sr–Nd isotopic study on picrites, flood basalts and silicic volcanic rocks. Journal of Asian Earth Sciences, 2011, 42, 1341-1355.	2.3	86
94	Middle-Late Ordovician arc-type plutonism in the NW Chinese Tianshan: Implication for the accretion of the Kazakhstan continent in Central Asia. Journal of Asian Earth Sciences, 2012, 49, 40-53.	2.3	86
95	Geochronological and geochemical constraints on the petrogenesis of high-K granite from the Suffi abad area, Sanandaj-Sirjan Zone, NW Iran. Chemie Der Erde, 2011, 71, 363-376.	2.0	85
96	Crustal Melting and Flow beneath Northern Tibet: Evidence from Mid-Miocene to Quaternary Strongly Peraluminous Rhyolites in the Southern Kunlun Range. Journal of Petrology, 2012, 53, 2523-2566.	2.8	83
97	High-Mg potassic rocks from Taiwan: implications for the genesis of orogenic potassic lavas. Lithos, 2001, 59, 153-170.	1.4	81
98	Quantifying Barrovian metamorphism in the Danba Structural Culmination of eastern Tibet. Journal of Metamorphic Geology, 2013, 31, 909-935.	3.4	81
99	Late Early Cretaceous magmatic rocks (118–113 Ma) in the middle segment of the Bangong–Nujiang suture zone, Tibetan Plateau: Evidence of lithospheric delamination. Gondwana Research, 2017, 44, 116-138.	6.0	80
100	A geochronological and petrological study of anatectic paragneiss and associated granite dykes from the <scp>D</scp> ay <scp>N</scp> ui <scp>C</scp> on <scp>V</scp> oi metamorphic core complex, <scp>N</scp> orth <scp>V</scp> ietnam: constraints on the timing of metamorphism within the <scp>R</scp> ed <scp>R</scp> iver shear zone. Journal of Metamorphic Geology, 2013, 31, 359-387.	3.4	79
101	Geochemical and Sr-Nd Isotopic Characteristics of Late Paleogene Ultrapotassic Magmatism in Southeastern Tibet. International Geology Review, 2002, 44, 559-574.	2.1	77
102	Late Cenozoic volcanism in central Myanmar: Geochemical characteristics and geodynamic significance. Lithos, 2016, 245, 174-190.	1.4	75
103	Petrogenesis of Malaysian granitoids in the Southeast Asian tin belt: Part 1. Geochemical and Sr-Nd isotopic characteristics. Bulletin of the Geological Society of America, 2015, 127, 1209-1237.	3.3	73
104	Linking magmatism with collision in an accretionary orogen. Scientific Reports, 2016, 6, 25751.	3.3	73
105	A 6000-km-long Neo-Tethyan arc system with coherent magmatic flare-ups and lulls in South Asia. Geology, 2019, 47, 573-576.	4.4	73
106	Geochemical and Sm-Nd isotopic characteristics of metabasites from central Hainan Island, South China and their tectonic significance. Island Arc, 2002, 11, 193-205.	1.1	72
107	U-Pb dating and tectonic implication of ophiolite and metabasite from the Song Ma suture zone, northern Vietnam. Numerische Mathematik, 2014, 314, 649-678.	1.4	72
108	Geochemical and Sr–Nd isotopic characteristics of Cretaceous to Paleocene granitoids and volcanic rocks, SE Tibet: Petrogenesis and tectonic implications. Journal of Asian Earth Sciences, 2012, 53, 131-150.	2.3	71

#	Article	IF	Citations
109	Old continental zircons from a young oceanic arc, eastern Taiwan: Implications for Luzon subduction initiation and Asian accretionary orogeny. Geology, 2015, 43, 479-482.	4.4	67
110	Transitional I S type characteristic in the Main Range Granite, Peninsular Malaysia. Journal of Asian Earth Sciences, 2013, 76, 225-240.	2.3	66
111	Petrogenesis of a Late Carboniferous mafic dike–granitoid association in the western Tianshan: Response to the geodynamics of oceanic subduction. Lithos, 2014, 202-203, 85-99.	1.4	66
112	Initiation of arc magmatism in an embryonic continental rifting zone of the southernmost part of Okinawa Trough. Terra Nova, 2000, 12, 225-230.	2.1	63
113	Identification of mantle plumes in the Emeishan Large Igneous Province. Episodes, 2007, 30, 32-42.	1.2	63
114	Structural evolution of the Day Nui Con Voi metamorphic complex: Implications on the development of the Red River Shear Zone, Northern Vietnam. Journal of Structural Geology, 2008, 30, 1540-1553.	2.3	62
115	The nature of transition from adakitic to non-adakitic magmatism in a slabÂwindow setting: A synthesis from the eastern Pontides, NE Turkey. Geoscience Frontiers, 2013, 4, 353-375.	8.4	62
116	Identification of Early Carboniferous Granitoids from Southern Tibet and Implications for Terrane Assembly Related to the Paleo-Tethyan Evolution. Journal of Geology, 2012, 120, 531-541.	1.4	60
117	New U–Pb zircon ages of plagiogranites from the Nagaland–Manipur Ophiolites, Indo-Myanmar Orogenic Belt, NE India. Journal of the Geological Society, 2017, 174, 170-179.	2.1	60
118	SHRIMP zircon age constraints from the Larsemann Hills region, Prydz Bay, for a late Mesoproterozoic to early Neoproterozoic tectono-thermal event in East Antarctica. Numerische Mathematik, 2008, 308, 573-617.	1.4	59
119	Detrital Zircons Dismember Sibumasu in East Gondwana. Journal of Geophysical Research: Solid Earth, 2018, 123, 6098-6110.	3.4	59
120	First evidence of the Cambrian basement in Upper Peninsula of Thailand and its implication for crustal and tectonic evolution of the Sibumasu terrane. Gondwana Research, 2013, 24, 1031-1037.	6.0	57
121	Iranian ultrapotassic volcanism at ~11ÂMa signifies the initiation of postâ€collisional magmatism in the <scp>A</scp> rabia– <scp>E</scp> urasia collision zone. Terra Nova, 2013, 25, 405-413.	2.1	57
122	Zircon U–Pb ages and Hf isotopic compositions of alkaline silicic magmatic rocks in the Phan Si Pan-Tu Le region, northern Vietnam: Identification of a displaced western extension of the Emeishan Large Igneous Province. Journal of Asian Earth Sciences, 2015, 97, 102-124.	2.3	57
123	Zircon Hf isotopic constraints on magmatic and tectonic evolution in Iran: Implications for crustal growth in the Tethyan orogenic belt. Journal of Asian Earth Sciences, 2017, 145, 652-669.	2.3	57
124	A new genetic model for the East Taiwan Ophiolite and its implications for Dupal domains in the Northern Hemisphere. Earth and Planetary Science Letters, 1992, 109, 133-145.	4.4	56
125	Mesozoic high-Ba-Sr granitoids from North China: geochemical characteristics and geological implications. Terra Nova, 2003, 15, 272-278.	2.1	56
126	Migrating magmatism in a continental arc: Geodynamics of the Eastern Mediterranean revisited. Journal of Geodynamics, 2011, 52, 2-15.	1.6	54

#	Article	IF	Citations
127	Generation of Cenozoic granitoids in Hokkaido (Japan): Constraints from zircon geochronology, Sr-Nd-Hf isotopic and geochemical analyses, and implications for crustal growth. Numerische Mathematik, 2014, 314, 704-750.	1.4	53
128	Eocene magmatic processes and crustal thickening in southern Tibet: Insights from strongly fractionated ca. 43Ma granites in the western Gangdese Batholith. Lithos, 2015, 239, 128-141.	1.4	52
129	Tectonic significance and geodynamic processes of largeâ€scale Early Cretaceous granitoid magmatic events in the southern Great Xing'an Range, North China. Tectonics, 2017, 36, 615-633.	2.8	52
130	Discrimination of the age and tectonic setting for magmatic rocks along the Zagros thrust zone, northwest Iran, using the zircon U–Pb age and Sr–Nd isotopes. Journal of Geodynamics, 2011, 52, 304-320.	1.6	50
131	Chemical and Sr–Nd isotopic compositions and zircon U–Pb ages of the Birimian granitoids from NE Burkina Faso, West African Craton: Implications on the geodynamic setting and crustal evolution. Precambrian Research, 2013, 224, 364-396.	2.7	49
132	Sources and provenance of the Neoproterozoic placer deposits of the Northern Kazakhstan: Implication for continental growth of the western Central Asian Orogenic Belt. Gondwana Research, 2017, 47, 28-43.	6.0	49
133	Linking a prolonged Neoâ€Tethyan magmatic arc in <scp>S</scp> outh <scp>A</scp> sia: Zircon Uâ€Pb and Hf isotopic constraints from the Lohit Batholith, <scp>NE I</scp> ndia. Terra Nova, 2013, 25, 453-458.	2.1	48
134	Magnesium isotopic composition of the oceanic mantle and oceanic Mg cycling. Geochimica Et Cosmochimica Acta, 2017, 206, 151-165.	3.9	47
135	Proterozoic mantle lithosphere beneath the extended margin of the South China block: In situ Re-Os evidence. Geology, 2003, 31, 709.	4.4	45
136	Late Triassic subduction-related ultramafic–mafic magmatism in the Amasya region (eastern Pontides,) Tj ETQo Sciences, 2011, 42, 234-257.	q0 0 0 rgB 2.3	T /Overlock 1 45
137	Cenozoic exhumation of the internal Zagros: first constraints from low-temperature thermochronology and implications for the build-up of the Iranian plateau. Lithos, 2014, 206-207, 100-112.	1.4	45
138	Source and mode of the Permian Panjal Trap magmatism: Evidence from zircon U–Pb and Hf isotopes and trace element data from the Himalayan ultrahigh-pressure rocks. Lithos, 2016, 260, 286-299.	1.4	44
139	Petrochemistry and U-Pb Zircon Ages of Adakitic Intrusions from the Pulur Massif (Eastern Pontides,) Tj ETQq1 1 Tectonics in the Eastern Mediterranean. Journal of Geology, 2011, 119, 394-417.	0.784314 1.4	rgBT /Overlo
140	Age and Geochemical Features of Dredged Basalts from Offshore SW Taiwan: The Coincidence of Intra-Plate Magmatism with the Spreading South China Sea. Terrestrial, Atmospheric and Oceanic Sciences, 2012, 23, 657.	0.6	43
141	Zircon ages and Hf isotopic constraints on sources of clastic metasediments of the Slyudyansky high-grade complex, southeastern Siberia: Implication for continental growth and evolution of the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 2013, 62, 18-36.	2.3	43
142	A reinterpretation of the metamorphic Yuli belt: Evidence for a middle-late Miocene accretionary prism in eastern Taiwan. Tectonics, 2017, 36, 188-206.	2.8	43
143	On the magmatic record of the Makran arc, southeastern Iran: Insights from zircon Uâ€Pb geochronology and bulkâ€rock geochemistry. Geochemistry, Geophysics, Geosystems, 2014, 15, 2151-2169.	2.5	41
144	Zircon U-Pb age and geochemical constraints on the origin and tectonic implication of Cadomian (Ediacaran-Early Cambrian) magmatism in SE Turkey. Journal of Asian Earth Sciences, 2016, 130, 223-238.	2.3	39

#	Article	IF	CITATIONS
145	Correlation between magmatism of the Ladakh Batholith and plate convergence rates during the India–Eurasia collision. Gondwana Research, 2014, 26, 1051-1059.	6.0	38
146	Age and anatomy of the Gongga Shan batholith, eastern Tibetan Plateau, and its relationship to the active Xianshui-he fault., 2016, 12, 948-970.		38
147	Eocene magmatism (Maden Complex) in the Southeast Anatolian Orogenic Belt: Magma genesis and tectonic implications. Geoscience Frontiers, 2018, 9, 1829-1847.	8.4	38
148	The Age of the Potassic Alkaline Igneous Rocks along the Ailao Shan–Red River Shear Zone: Implications for the Onset Age of Left‣ateral Shearing: A Discussion. Journal of Geology, 2008, 116, 201-204.	1.4	37
149	Age and geochemical characteristics of Paleogene basalts drilled from western Taiwan: Records of initial rifting at the southeastern Eurasian continental margin. Lithos, 2012, 155, 426-441.	1.4	36
150	Two parallel magmatic belts with contrasting isotopic characteristics from southern Tibet to Myanmar: zircon U–Pb and Hf isotopic constraints. Journal of the Geological Society, 2019, 176, 574-587.	2.1	36
151	A â€~hidden' 180-enriched reservoir in the sub-arc mantle. Scientific Reports, 2014, 4, 4232.	3.3	34
152	First mid-ocean ridge-type ophiolite from the Meso-Tethys suture zone in the north-central Tibetan plateau. Bulletin of the Geological Society of America, 2020, 132, 2202-2220.	3.3	34
153	Late Paleozoic granitoids from central Qiangtang, northern Tibetan plateau: A record of Paleo-Tethys Ocean subduction. Journal of Asian Earth Sciences, 2018, 167, 139-151.	2.3	33
154	Early Mesozoic Magmatism Within the Tibetan Plateau: Implications for the Paleoâ€√ethyan Tectonic Evolution and Continental Amalgamation. Tectonics, 2019, 38, 3505-3543.	2.8	33
155	40Ar/39Ar dating result of Neogene basalts in Vietnam and its tectonic implication. Geodynamic Series, 1998, , 317-330.	0.1	32
156	Geological offsets and age constraints along the northern Dead Sea fault, Syria. Journal of the Geological Society, 2010, 167, 1001-1008.	2.1	31
157	New age and geochemical constraints on the origin of Quaternary adakite-like lavas in the Arabia–Eurasia collision zone. Lithos, 2016, 264, 348-359.	1.4	30
158	New evidence for Jurassic continental rifting in the northern Sanandaj Sirjan Zone, western Iran: the Ghalaylan seamount, southwest Ghorveh. International Geology Review, 2020, 62, 1635-1657.	2.1	30
159	Laser fusion argonâ€40/argonâ€39 ages of Darwin impact glass. Meteoritics and Planetary Science, 2002, 37, 1555-1562.	1.6	29
160	Age of the Gonzha Group (Argun terrane, central asian Fold Belt) inferred from U-Pb and Lu-Hf zircon data. Doklady Earth Sciences, 2012, 444, 692-695.	0.7	29
161	Geochemical constraints on the petrogenesis of high-Mg basaltic andesites from the Northern Taiwan Volcanic Zone. Chemical Geology, 2002, 182, 513-528.	3.3	28
162	Quantifying the <i>Pâ€"Tâ€"t</i> conditions of northâ€"south Lhasa terrane accretion: new insight into the preâ€Himalayan architecture of the Tibetan plateau. Journal of Metamorphic Geology, 2015, 33, 91-113.	3.4	28

#	Article	IF	CITATIONS
163	No Paleozoic metamorphics in Palawan (the Philippines)? Evidence from single grain U–Pb dating of detrital zircons. Journal of Asian Earth Sciences, 2012, 52, 134-145.	2.3	27
164	Thermochronology of the PoSen complex, northern Vietnam: Implications for tectonic evolution in SE Asia. Journal of Asian Earth Sciences, 2011, 40, 1044-1055.	2.3	26
165	Genesis of pristine adakitic magmas by lower crustal melting: A perspective from amphibole composition. Journal of Geophysical Research: Solid Earth, 2017, 122, 1934-1948.	3.4	26
166	The igneous provinciality in Taiwan: Consequence of continental rifting superimposed by Luzon and Ryukyu subduction systems. Journal of Southeast Asian Earth Sciences, 1995, 11, 73-80.	0.2	25
167	Zircon U–Pb geochronology, Hf isotopic compositions, and petrogenetic study of Abor volcanic rocks of Eastern Himalayan Syntaxis, Northeast India: Implications for eruption during breakup of Eastern Gondwana. Geological Journal, 2020, 55, 1227-1244.	1.3	24
168	Origin of two differentiation trends in the Emeishan flood basalts. Science Bulletin, 2003, 48, 390-394.	1.7	23
169	Petrology and geochemistry at the Lower zone-Middle zone transition of the Panzhihua intrusion, SW China: Implications for differentiation and oxide ore genesis. Geoscience Frontiers, 2013, 4, 517-533.	8.4	23
170	Petrogenesis and tectonic implications of Late Devonian arc volcanic rocks in southern Beishan orogen, NW China: Geochemical and Nd–Sr–Hf isotopic constraints. Lithos, 2017, 278-281, 84-96.	1.4	23
171	Trace Element and Isotope Characteristics of Cenozoic Basalts around the Tanlu Fault with Implications for the Eastern Plate Boundary between North and South China: A Reply. Journal of Geology, 2000, 108, 743-747.	1.4	22
172	Formation history of the Tuva-Mongolian Massif (Western Hubsugul region, North Mongolia) based on U-Pb dating of detrital zircons from sandstone of the Darkhat group by the LA-ICP-MS method. Doklady Earth Sciences, 2011, 441, 1498-1501.	0.7	22
173	Origin and tectonic implication of an UHP metamorphic mafic–ultramafic complex from the Sulu UHP terrane, eastern China: Evidence from petrological and geochemical studies of CCSD-Main Hole core samples. Chemical Geology, 2010, 276, 69-87.	3.3	21
174	Composition and structure of the lithospheric mantle beneath NE Iran: Constraints from mantle xenoliths. Lithos, 2014, 202-203, 267-282.	1.4	21
175	U Pb zircon geochronology constraints on the ages of the Tananao Schist Belt and timing of orogenic events in Taiwan: Implications for a new tectonic evolution of the South China Block during the Mesozoic. Tectonophysics, 2016, 686, 68-81.	2.2	21
176	Age, geochemical and isotopic variations in volcanic rocks from the Coastal Range of Taiwan: Implications for magma generation in the Northern Luzon Arc. Lithos, 2017, 272-273, 92-115.	1.4	21
177	Closure of the Bangong–Nujiang Tethyan Ocean in the central Tibet: Results from the provenance of the Duoni Formation. Journal of Sedimentary Research, 2019, 89, 1039-1054.	1.6	21
178	Cenozoic tectonics in the Buruanga Peninsula, Panay Island, Central Philippines, as constrained by U–Pb, 40Ar/39Ar and fission track thermochronometers. Tectonophysics, 2013, 582, 205-220.	2.2	20
179	Water-fluxed crustal melting and petrogenesis of large-scale Early Cretaceous intracontinental granitoids in the southern Great Xing'an Range, North China. Bulletin of the Geological Society of America, 2018, 130, 580-597.	3.3	20
180	Lateral Structural Variation of the Lithosphereâ€Asthenosphere System in the Northeastern to Eastern Iranian Plateau and Its Tectonic Implications. Journal of Geophysical Research: Solid Earth, 2021, 126, .	3.4	20

#	Article	IF	CITATIONS
181	Zircon U-Pb Age Determination of Volcanic Eruptions in Lutao and Lanyu in the Northern Luzon Magmatic Arc. Terrestrial, Atmospheric and Oceanic Sciences, 2014, 25, 149.	0.6	19
182	Southward subduction of the Bangong-Nujiang Tethys Ocean: insights from ca. 161–129ÂMa arc volcanic rocks in the north of Lhasa terrane, Tibet. International Journal of Earth Sciences, 2020, 109, 631-647.	1.8	19
183	Basaltic dykes of the Eastern Belt of Peninsular Malaysia: The effects of the difference in crustal thickness of Sibumasu and Indochina. Journal of Asian Earth Sciences, 2013, 77, 127-139.	2.3	18
184	Late Carboniferous ophiolites from the southern Lancangjiang belt, SW China: Implication for the arc–back-arc system in the eastern Paleo-Tethys. Lithos, 2019, 344-345, 134-146.	1.4	18
185	Magnesium isotopic systematics of the Makran arc magmas, Iran: Implications for crust-mantle Mg isotopic balance. Geochimica Et Cosmochimica Acta, 2020, 278, 110-121.	3.9	18
186	A petrologic, geochemical and Sr–Nd isotopic study on contact metamorphism and degassing of Devonian evaporites in the Norilsk aureoles, Siberia. Contributions To Mineralogy and Petrology, 2013, 165, 683-704.	3.1	17
187	Mesozoic juvenile crustal formation in the easternmost Tethys: Zircon Hf isotopic evidence from Sumatran granitoids, Indonesia. Geology, 2020, 48, 1002-1005.	4.4	17
188	Resolving the Paleogeographic Puzzle of the Lhasa Terrane in Southern Tibet. Geophysical Research Letters, 2021, 48, e2021GL094236.	4.0	17
189	Thermomechanical models for the dynamics and melting processes in the Mariana subduction system. Journal of Geophysical Research, 2010, 115, .	3.3	16
190	The genetic association of adakites and Cu–Au ore deposits': a reply. International Geology Review, 2012, 54, 370-372.	2.1	16
191	Quaternary high-Mg ultrapotassic rocks from the Qal'eh Hasan Ali maars, southeastern Iran: petrogenesis and geodynamic implications. Contributions To Mineralogy and Petrology, 2015, 170, 1.	3.1	16
192	Age and isotope geochemistry of magmatic rocks of the Lohit Plutonic Complex, eastern Himalaya: implications for the evolution of Transhimalayan arc magmatism. Journal of the Geological Society, 2020, 177, 379-394.	2.1	16
193	Age and tectonic position of the Stanovoi metamorphic complex in the eastern part of the Central Asian Foldbelt. Geotectonics, 2017, 51, 341-352.	0.9	15
194	Transition from extrusion to flow tectonism around the Eastern Himalaya syntaxis. Bulletin of the Geological Society of America, 2018, 130, 1675-1696.	3. 3	15
195	Permian ultrafelsic A-type granite from Besar Islands group, Johor, peninsular Malaysia. Journal of Earth System Science, 2014, 123, 1857-1878.	1.3	14
196	A Late Miocene magmatic flare-up in West Sulawesi triggered by Banda slab rollback. Bulletin of the Geological Society of America, 2020, 132, 2517-2528.	3.3	14
197	Jurassic Dextral Movement along the Dien Bien Phu Fault, NW Vietnam: Constraints from ⁴⁰ Ar/ ³⁹ Ar Geochronology. Journal of Geology, 2009, 117, 192-199.	1.4	13
198	Diachronous initiation of post-collisional magmatism in the Arabia-Eurasia collision zone. Lithos, 2020, 356-357, 105394.	1.4	13

#	Article	IF	CITATIONS
199	Eocene granulite-facies metamorphism prior to deformation of the Mianhuadi mafic complex in the Ailao Shan-Red River shear zone, Yunnan Province, SW China. Journal of Asian Earth Sciences, 2017, 145, 626-640.	2.3	12
200	Low-l´180 mantle-derived magma in Panjal Traps overprinted by hydrothermal alteration and Himalayan UHP metamorphism: Revealed by SIMS zircon analysis. Gondwana Research, 2018, 56, 12-22.	6.0	12
201	Petrogenesis of Mid-Eocene granites in South Sakhalin, Russian Far East: Juvenile crustal growth and comparison with granitic magmatism in Hokkaido and Sikhote-Alin. Journal of Asian Earth Sciences, 2018, 167, 103-129.	2.3	12
202	Growth and thermal maturation of the Toba magma reservoir. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	12
203	Paleoproterozoic age of the Zeya Group, Stanovoy Complex of the Dzhugdzhur–Stanovoy Superterrane (Central Asian mobile belt): Results of Sm–Nd isotopic and U–Th–Pb geochronological (LA-ICP-MS) аnalyses. Doklady Earth Sciences, 2016, 471, 1234-1237.	0.7	11
204	Post-collisional magmatism in the Late Miocene Rodna-BârgÄ f u district (East Carpathians, Romania): Geochemical constraints and petrogenetic models. Lithos, 2016, 266-267, 367-382.	1.4	11
205	Focal mechanisms and stress variations in the Caucasus and Northeast Turkey from constraints of regional waveforms. Tectonophysics, 2016, 691, 362-374.	2.2	11
206	Timing and span of the continental crustal growth in SE Pakistan: Evidence from LA-ICP-MS U–Pb zircon ages from granites of the Nagar Parkar Igneous Complex. Gondwana Research, 2018, 61, 172-186.	6.0	11
207	Tracing Argoland in eastern Tethys and implications for India-Asia convergence. Bulletin of the Geological Society of America, 2021, 133, 1712-1722.	3.3	11
208	Catastrophic outburst and tsunami flooding of Lake Baikal: U–Pb detrital zircon provenance study of the Palaeo-Manzurka megaflood sediments. International Geology Review, 2016, 58, 1818-1830.	2.1	10
209	Mid-Miocene volcanic migration in the westernmost Sunda arc induced by India-Eurasia collision. Geology, 2021, 49, 713-717.	4.4	10
210	Discovery of a hidden Triassic Arc in the Southern South China Sea: Evidence for the breakaway of a ribbon continent with implications for the evolution of the Western Pacific margin. Terra Nova, 2022, 34, 12-19.	2.1	10
211	Petrology, geothermobarometry, and P-T path of spinel-bearing symplectite migmatites from the Simin area, Hamedan, Sanandaj-Sirjan Zone, Iran. Turkish Journal of Earth Sciences, 2019, 28, 275-298.	1.0	10
212	Ages of ophiolitic rocks along plate suture in Taiwan orogen: Fate of the South China Sea from subduction to collision. Terrestrial, Atmospheric and Oceanic Sciences, 2020, 31, 383-402.	0.6	10
213	Whole-rock elemental and zircon Hf isotopic geochemistry of mafic and ultramafic rocks from the Early Cretaceous Comei large igneous province in SE Tibet: constraints on mantle source characteristics and petrogenesis. Himalayan Journal of Sciences, 2008, 5, 178-180.	0.3	9
214	The delimitation between the mature and juvenile crustal provinces in SE Asia: Insights from detrital zircon U-Pb and Hf isotopic data for the Salween drainage, Myanmar. Journal of Asian Earth Sciences, 2017, 145, 641-651.	2.3	9
215	Detrital zircon record from major rivers of Luzon Island: implications for Cenozoic continental growth in SE Asia. Journal of the Geological Society, 2019, 176, 727-735.	2.1	9
216	Magmatism in the Siang window of the Eastern Himalayan Syntaxis, NE India: a vestige of Kerguelen mantle plume activity. Geological Society Special Publication, 2022, 518, 301-323.	1.3	9

#	Article	IF	CITATIONS
217	"Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, east China: Geochronological, geochemical and Nd–Sr isotopic evidence―– Reply. Chemical Geology, 2006, 235, 186-190.	3.3	8
218	40Ar/39Ar thermochronology of Paleoproterozoic granitoids of northeast Burkina Faso, West African Craton: Implications for regional tectonics. Precambrian Research, 2013, 235, 208-229.	2.7	8
219	Lower age limit and provenance areas of metaterrigenous rocks of the allochthon of Tunka Bald Mountains (East Sayan). Doklady Earth Sciences, 2015, 461, 356-359.	0.7	8
220	Age and Sources of Terrigenous Rocks of Basal Formation of the Tsagaan-Olom Group of the Dzabkhan Terrane: Results of U–Th–Pb Geochronological, Lu–Hf and Sm–Nd Isotopic Studies. Stratigraphy and Geological Correlation, 2019, 27, 555-572.	0.8	8
221	LA-ICP-MS zircon U-Pb age and Hf isotope data from the granitic rocks in the Iwakuni area, Southwest Japan: re-evaluation of emplacement order and the source magma. Geosciences Journal, 2019, 23, 917-931.	1.2	8
222	Employing geochemistry and geochronology to unravel genesis and tectonic setting of iron oxide-apatite deposits of the Bafq-Saghand metallogenic belt, Central Iran. International Journal of Earth Sciences, 2021, 110, 127-164.	1.8	8
223	The thermal history of the lhasa block, South Tibetan Plateau based on FTD and Arî—,Ar dating. Radiation Measurements, 1999, 31, 627-632.	1.4	7
224	Miocene sedimentary provenance and paleogeography of the Hengchun Peninsula, southern Taiwan: Implications for tectonic development of the Taiwan orogen. Journal of Asian Earth Sciences, 2020, 194, 104032.	2.3	7
225	Mafic microgranular enclaves (MMEs) in amphibole-bearing granites of the Bintang batholith, Main Range granite province: Evidence for a meta-igneous basement in Western Peninsular Malaysia. Journal of Asian Earth Sciences, 2017, 143, 11-29.	2.3	6
226	Geochemistry and geochronology of VHMS mineralization in the Sangkaropi district, central-West Sulawesi, Indonesia: Constraints on its tectono-magmatic setting. Ore Geology Reviews, 2019, 114, 103134.	2.7	6
227	Zircon U–Pb ages and Lu–Hf isotopes of metagranitoids from the Subansiri region, Eastern Himalaya: implications for crustal evolution along the northern Indian passive margin in the early Paleozoic. Geological Society Special Publication, 2019, 481, 299-318.	1.3	6
228	Petrogenetic source and tectonic evolution of the Neoproterozoic Nagar Parkar Igneous Complex granitoids: Evidence from zircon Hf isotope and trace element geochemistry. Precambrian Research, 2021, 354, 106047.	2.7	6
229	Zircon U-Pb and Hf isotopic constraints on the magmatic evolution of the Northern Luzon Arc. Terrestrial, Atmospheric and Oceanic Sciences, 2018, 29, 149-186.	0.6	6
230	Evidence for Cool Extrusion of the North Indochina Block along the Ailao Shan Red River Shear Zone, a Diancang Shan Perspective. Journal of Geology, 2014, 122, 567-590.	1.4	5
231	How Central Asian Orogeny Evolves: New Insights from Endâ€Permian to Middle Triassic Magmatic Record along the Solonker Suture Zone. Acta Geologica Sinica, 2016, 90, 1907-1908.	1.4	5
232	Mid-Miocene (post 12 Ma) displacement along the central Karakoram fault zone in the Nubra Valley, Ladakh, India from spot LA-ICPMS U/Pb zircon ages of granites. Journal of the Geological Society of India, 2017, 89, 231-239.	1.1	5
233	Magma origins and geodynamic implications for the Makran-Chagai arc from geochronology and geochemistry of Bazman volcano, southeastern Iran. Journal of Asian Earth Sciences, 2019, 171, 289-304.	2.3	5
234	Geology and zircon U-Pb geochronology of the Mtkvari pyroclastic flow and evaluation of destructive processes affecting Vardzia rock-cut city, Georgia. Quaternary International, 2020, 540, 137-145.	1.5	5

#	Article	IF	Citations
235	«sup>238U– ²⁰⁶ Pb dating of U-series disequilibrium zircons by secondary ion mass spectrometry. Journal of Analytical Atomic Spectrometry, 2021, 36, 999-1006.	3.0	5
236	Origin of two differentiation trends in the Emeishan flood ba-salts. Science Bulletin, 2003, 48, 390.	1.7	5
237	Zircon <scp>Uâ€"Pb</scp> ages and Hf isotopes of lâ€type granite from western Arunachal Himalaya, <scp>NE</scp> India: Implications for the continental arc magmatism in the Palaeoproterozoic supercontinent Columbia. Geological Journal, 2022, 57, 5000-5018.	1.3	5
238	Chemical and Sr-Nd compositions and 40Ar/39Ar ages of NW-trending dolerite dikes of Burkina Faso: Evidence for a Mesoproterozoic magmatism in the West African Craton. Geoscience Frontiers, 2018, 9, 1957-1980.	8.4	4
239	Permian felsic magmatism in the Neoproterozoic Nagar Parkar Igneous Complex of the Malani Igneous Suite: Evidence from zircon U–Pb age. Island Arc, 2019, 28, e12323.	1.1	4
240	EARLY NEOPROTEROZOIC CRUST FORMATON IN THE DZABKHAN MICROCONTINENT, CENTRAL ASIAN OROGENIC BELT. Geodinamika I Tektonofizika, 2017, 8, 499-501.	0.7	4
241	Paleoproterozoic to Cenozoic zircon U–Pb ages with Hf signatures from metamorphic rocks and granodiorite of Tokunoshima: constraints on the geotectonic subdivision of the Ryukyu island arc, Southwest Japan. International Geology Review, 2022, 64, 425-440.	2.1	4
242	Early Eocene high-Sr/Y magmas from the Urumieh-Dokhtar paleo-arc, Iran: Implications for the origin of high-flux events in magmatic arcs. Lithos, 2022, 416-417, 106656.	1.4	4
243	Late Eocene subduction initiation of the Indian Ocean in the North Sulawesi Arc, Indonesia, induced by abrupt Australian plate acceleration. Lithos, 2022, 422-423, 106742.	1.4	4
244	Reply to comment on "Onset of the movement along the Ailao Shan-Red river shear zone: Constraint from 40Ar/39Ar dating results for Nam Dinh area, northern Vietnam―by . Journal of Asian Earth Sciences 18, 281–292. Journal of Asian Earth Sciences, 2001, 20, 101-103.	2.3	3
245	The Hercynian Ikat thrust in the Transbaikalian segment of the Central Asian Orogenic Belt. Russian Geology and Geophysics, 2015, 56, 1671-1684.	0.7	3
246	Zirconium in rutile thermometry of the Himalayan ultrahigh-pressure eclogites and their retrogressed counterparts, Kaghan Valley, Pakistan. Lithos, 2019, 344-345, 86-99.	1.4	3
247	Tracking the magmatic response to subduction initiation in the forearc mantle wedge: Insights from peridotite geochemistry of the Guleman and Kızıldağ ophiolites, Southeastern Turkey. Lithos, 2020, 376-377, 105737.	1.4	3
248	Late Cretaceous adakitic rocks from the western Tibetan Plateau: implications for the subduction of the Neo-Tethys Ocean. International Geology Review, 2020, , 1-16.	2.1	3
249	Simultaneous growth and reworking of the Lhasa basement: A case study from Early Cretaceous magmatism in the north-central Tibet. Lithos, 2021, 380-381, 105863.	1.4	3
250	Initial subduction-related magmatism in southern Alaska identified by geochemistry and zircon Hf-O isotopes. Science Bulletin, 2021, 66, 1030-1036.	9.0	3
251	Structural inversion in the northern South China Sea continental margin and its tectonic implications. Terrestrial, Atmospheric and Oceanic Sciences, 2017, 28, 891-922.	0.6	3
252	Petrologic case for Eocene slab breakoff during the Indo-Asian collision: Comment and Reply. Geology, 2003, 31, e7-e8.	4.4	2

#	Article	IF	CITATIONS
253	Exotic origin of Pingtan Island in the Pingtan-Dongshan Metamorphic Belt (SE China): Zircon U-Pb age and Hf isotope evidences. Lithos, 2020, 374-375, 105701.	1.4	2
254	INTRODUCTION, PARTâ€1â€"Geodynamic evolution of Eastern Himalayan and Indoâ€"Myanmar orogenic belts: Advances through interdisciplinary studies. Geological Journal, 2022, 57, 476-481.	1.3	2
255	Was Triassic Continental Subduction Solely Responsible for the Generation of Mesozoic Mafic Magmas and Mantle Source Enrichment in the Dabie-Sulu Orogen?. International Geology Review, 2003, 45, 659-670.	2.1	1
256	Reply to Discussion on †Geological offsets and age constraints along the northern Dead Sea fault, Syria'. Journal of the Geological Society, 2011, 168, 623-624.	2.1	1
257	Comment on â€~Geochronologic evidence for a cold arc–continent collision: The Taiwan orogeny' by R.P. Wintsch, HJ. Yang, XH. Li, KA. Tung [Lithos 125 (2011) 236–248]. Lithos, 2012, 132-133, 193-195.	1.4	1
258	Geochemical perspectives on mantle dynamics and plate interactions in Asia — A special issue in honor/memory of Dr. Shen-su Sun. Chemical Geology, 2012, 328, 1-4.	3.3	0
259	Asian Orogeny And Continental Tectonics From Geochemical Perspectives: A Special Issue in Memory of Professor Bor-ming Jahn for His Scientific Contributions and Service to JAES. Journal of Asian Earth Sciences, 2017, 145, 297.	2.3	0
260	Asian Orogeny And Continental Tectonics From Geochemical Perspectives: A Special Issue in Memory of Professor Bor-ming Jahn for His Scientific Contributions and Service to JAES (Part 2). Journal of Asian Earth Sciences, 2018, 167, 1.	2.3	0
261	PALEOZOIC XENOLITHS IN EOCENE PLUTONS: THE EVIDENCE FOR THE DESTRUCTION OF PRE-JURASSIC CRYSTALLINE BASEMENT BENEATH ADJARA–TRIALETI BELT, LESSER CAUCASUS. Geologica Carpathica, 2021, 72, .	0.7	0
262	TRIASSIC TERMINAL MAGMATISM IN THE SOUTHERN CENTRAL ASIAN OROGENIC BELT: IMPLICATIONS FOR OCEAN CLOSURE IN ACCRETIONARY OROGENS. Geodinamika I Tektonofizika, 2017, 8, 507-508.	0.7	0
263	SHORT EPISODES OF CRUST GENERATION DURING PROTRACTED ACCRETIONARY PROCESSES: EVIDENCE FROM CENTRAL ASIAN OROGENIC BELT, NW CHINA. Geodinamika I Tektonofizika, 2017, 8, 573-574.	0.7	O