Shaohui Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4963203/publications.pdf

Version: 2024-02-01

68 papers

4,430 citations

32 h-index 64 g-index

68 all docs 68 docs citations

68 times ranked 3231 citing authors

#	Article	IF	CITATIONS
1	A review on data-driven fault severity assessment in rolling bearings. Mechanical Systems and Signal Processing, 2018, 99, 169-196.	4.4	493
2	Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals. Mechanical Systems and Signal Processing, 2016, 76-77, 283-293.	4.4	339
3	A systematic review of deep transfer learning for machinery fault diagnosis. Neurocomputing, 2020, 407, 121-135.	3.5	253
4	Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis. Neurocomputing, 2015, 168, 119-127.	3.5	245
5	Bearing performance degradation assessment using long short-term memory recurrent network. Computers in Industry, 2019, 106, 14-29.	5.7	233
6	Time–frequency signal analysis for gearbox fault diagnosis using a generalized synchrosqueezing transform. Mechanical Systems and Signal Processing, 2012, 26, 205-217.	4.4	211
7	State-of-charge estimation of lithium-ion batteries using LSTM and UKF. Energy, 2020, 201, 117664.	4.5	204
8	Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning. Sensors, 2016, 16, 895.	2.1	189
9	Deep Decoupling Convolutional Neural Network for Intelligent Compound Fault Diagnosis. IEEE Access, 2019, 7, 1848-1858.	2.6	150
10	Improved multi-variable grey forecasting model with a dynamic background-value coefficient and its application. Computers and Industrial Engineering, 2018, 118, 278-290.	3.4	133
11	Evolving Deep Echo State Networks for Intelligent Fault Diagnosis. IEEE Transactions on Industrial Informatics, 2020, 16, 4928-4937.	7.2	131
12	Rolling element bearing defect detection using the generalized synchrosqueezing transform guided by time–frequency ridge enhancement. ISA Transactions, 2016, 60, 274-284.	3.1	120
13	Improving forecasting accuracy of daily enterprise electricity consumption using a random forest based on ensemble empirical mode decomposition. Energy, 2018, 165, 1220-1227.	4.5	120
14	Feature Denoising and Nearest–Farthest Distance Preserving Projection for Machine Fault Diagnosis. IEEE Transactions on Industrial Informatics, 2016, 12, 393-404.	7.2	96
15	Criterion fusion for spectral segmentation and its application to optimal demodulation of bearing vibration signals. Mechanical Systems and Signal Processing, 2015, 64-65, 132-148.	4.4	95
16	Semisupervised Distance-Preserving Self-Organizing Map for Machine-Defect Detection and Classification. IEEE Transactions on Instrumentation and Measurement, 2013, 62, 869-879.	2.4	92
17	A Systematic Review of Fuzzy Formalisms for Bearing Fault Diagnosis. IEEE Transactions on Fuzzy Systems, 2019, 27, 1362-1382.	6.5	86
18	A comparison of dimension reduction techniques for support vector machine modeling of multi-parameter manufacturing quality prediction. Journal of Intelligent Manufacturing, 2019, 30, 2245-2256.	4.4	82

#	Article	IF	CITATIONS
19	Continuous-scale mathematical morphology-based optimal scale band demodulation of impulsive feature for bearing defect diagnosis. Journal of Sound and Vibration, 2012, 331, 5864-5879.	2.1	78
20	A comparison of fuzzy clustering algorithms for bearing fault diagnosis. Journal of Intelligent and Fuzzy Systems, 2018, 34, 3565-3580.	0.8	74
21	Fully interpretable neural network for locating resonance frequency bands for machine condition monitoring. Mechanical Systems and Signal Processing, 2022, 168, 108673.	4.4	70
22	A Novel Sparse Echo Autoencoder Network for Data-Driven Fault Diagnosis of Delta 3-D Printers. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 683-692.	2.4	60
23	Automatic feature extraction of time-series applied to fault severity assessment of helical gearbox in stationary and non-stationary speed operation. Applied Soft Computing Journal, 2017, 58, 53-64.	4.1	59
24	Hierarchical feature selection based on relative dependency for gear fault diagnosis. Applied Intelligence, 2016, 44, 687-703.	3.3	56
25	Deep Fuzzy Echo State Networks for Machinery Fault Diagnosis. IEEE Transactions on Fuzzy Systems, 2019, , 1-1.	6.5	47
26	Enhanced generative adversarial network for extremely imbalanced fault diagnosis of rotating machine. Measurement: Journal of the International Measurement Confederation, 2021, 180, 109467.	2.5	47
27	Dynamic condition monitoring for 3D printers by using error fusion of multiple sparse auto-encoders. Computers in Industry, 2019, 105, 164-176.	5.7	43
28	A Bayesian approach to consequent parameter estimation in probabilistic fuzzy systems and its application to bearing fault classification. Knowledge-Based Systems, 2017, 129, 39-60.	4.0	39
29	Intelligent Fault Diagnosis of Delta 3D Printers Using Attitude Sensors Based on Support Vector Machines. Sensors, 2018, 18, 1298.	2.1	37
30	A manufacturing quality prediction model based on AdaBoost-LSTM with rough knowledge. Computers and Industrial Engineering, 2021, 155, 107227.	3.4	36
31	A novel self-training semi-supervised deep learning approach for machinery fault diagnosis. International Journal of Production Research, 2023, 61, 8238-8251.	4.9	36
32	Fusing convolutional generative adversarial encoders for 3D printer fault detection with only normal condition signals. Mechanical Systems and Signal Processing, 2021, 147, 107108.	4.4	33
33	Deep Hybrid State Network With Feature Reinforcement for Intelligent Fault Diagnosis of Delta 3-D Printers. IEEE Transactions on Industrial Informatics, 2020, 16, 779-789.	7.2	32
34	Dual-Attention Generative Adversarial Networks for Fault Diagnosis Under the Class-Imbalanced Conditions. IEEE Sensors Journal, 2022, 22, 1474-1485.	2.4	32
35	Self-Adaptation Graph Attention Network via Meta-Learning for Machinery Fault Diagnosis With Few Labeled Data. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-11.	2.4	29
36	Fault Diagnosis of Delta 3D Printers Using Transfer Support Vector Machine With Attitude Signals. IEEE Access, 2019, 7, 40359-40368.	2.6	27

#	Article	IF	CITATIONS
37	Generative Transfer Learning for Intelligent Fault Diagnosis of the Wind Turbine Gearbox. Sensors, 2020, 20, 1361.	2.1	25
38	Fault Diagnosis for Wind Turbine Gearboxes by Using Deep Enhanced Fusion Network. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-11.	2.4	23
39	Manifold Sparse Auto-Encoder for Machine Fault Diagnosis. IEEE Sensors Journal, 2020, 20, 8328-8335.	2.4	22
40	Improved adversarial learning for fault feature generation of wind turbine gearbox. Renewable Energy, 2022, 185, 255-266.	4.3	20
41	Incremental Novelty Identification From Initially One-Class Learning to Unknown Abnormality Classification. IEEE Transactions on Industrial Electronics, 2022, 69, 7394-7404.	5.2	18
42	A One-Class Generative Adversarial Detection Framework for Multifunctional Fault Diagnoses. IEEE Transactions on Industrial Electronics, 2022, 69, 8411-8419.	5.2	18
43	Bearing Condition Recognition and Degradation Assessment under Varying Running Conditions Using NPE and SOM. Mathematical Problems in Engineering, 2014, 2014, 1-10.	0.6	15
44	From fault detection to one-class severity discrimination of 3D printers with one-class support vector machine. ISA Transactions, 2021, 110, 357-367.	3.1	15
45	One-Shot Fault Diagnosis of Three-Dimensional Printers Through Improved Feature Space Learning. IEEE Transactions on Industrial Electronics, 2021, 68, 8768-8776.	5.2	15
46	Exploiting Generative Adversarial Networks as an Oversampling Method for Fault Diagnosis of an Industrial Robotic Manipulator. Applied Sciences (Switzerland), 2020, 10, 7712.	1.3	13
47	Deep Learning With Emerging New Labels for Fault Diagnosis. IEEE Access, 2019, 7, 6279-6287.	2.6	12
48	Pre-classified reservoir computing for the fault diagnosis of 3D printers. Mechanical Systems and Signal Processing, 2021, 146, 106961.	4.4	11
49	Theoretical Investigations on Kurtosis and Entropy and Their Improvements for System Health Monitoring. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-10.	2.4	11
50	Practical Production Scheduling for Hot Metal Pretreatment-Steelmaking-Continuous Casting Process Involving Preventive Maintenance Consideration. IEEE Access, 2018, 6, 57017-57029.	2.6	10
51	Flexible Kurtogram for Extracting Repetitive Transients for Prognostics and Health Management of Rotating Components. IEEE Access, 2019, 7, 55631-55639.	2.6	8
52	Rolling Bearing Incipient Fault Detection Based on a Multi-Resolution Singular Value Decomposition. Applied Sciences (Switzerland), 2019, 9, 4465.	1.3	8
53	Reducing False-Positives in Lung Nodules Detection Using Balanced Datasets. Frontiers in Public Health, 2021, 9, 671070.	1.3	8
54	Extreme random forest method for machine fault classification. Measurement Science and Technology, 2021, 32, 114006.	1.4	8

#	Article	IF	CITATIONS
55	Transmission Condition Monitoring of 3D Printers Based on the Echo State Network. Applied Sciences (Switzerland), 2019, 9, 3058.	1.3	7
56	Toward target search approach of swarm robotics in limited communication environment based on robot chains with elimination mechanism. International Journal of Advanced Robotic Systems, 2020, 17, 172988142091995.	1.3	7
57	Fault diagnosis of industrial robot reducer by an extreme learning machine with a level-based learning swarm optimizer. Advances in Mechanical Engineering, 2021, 13, 168781402110195.	0.8	7
58	From Anomaly Detection to Novel Fault Discrimination for Wind Turbine Gearboxes With a Sparse Isolation Encoding Forest. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-10.	2.4	7
59	A Deep Regression Model with Low-Dimensional Feature Extraction for Multi-Parameter Manufacturing Quality Prediction. Applied Sciences (Switzerland), 2020, 10, 2522.	1.3	6
60	Mechanical fault diagnosis by using dynamic transfer adversarial learning. Measurement Science and Technology, 2021, 32, 104005.	1.4	6
61	Variable Nearest Neighbor Locally Linear Embedding and Applications in Bearing Condition Recognition. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 2013, 49, 81.	0.7	6
62	A novel doublet extreme learning machines for Delta 3D printer fault diagnosis using attitude sensor. ISA Transactions, 2021, 109, 327-339.	3.1	5
63	Error Fusion of Hybrid Neural Networks for Mechanical Condition Dynamic Prediction. Sensors, 2021, 21, 4043.	2.1	5
64	Swarm Robot Exploration Strategy for Path Formation Tasks Inspired by Physarum polycephalum. Complexity, 2021, 2021, 1-17.	0.9	2
65	Machinery Fault Detection Using Autoencoder and Online Sequential Extreme Learning Machine. , 2021, , .		2
66	A Novel Generative Method for Machine Fault Diagnosis. Journal of Sensors, 2022, 2022, 1-11.	0.6	2
67	Few Shot Learning for Novel Fault Diagnosis with a Improved Prototypical Network. , 2021, , .		1
68	A Stochastic Learning Algorithm for Machine Fault Diagnosis. Shock and Vibration, 2022, 2022, 1-9.	0.3	0