
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4963032/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advances and future perspectives in epithelial drug delivery. Advanced Drug Delivery Reviews, 2022, 186, 114293.	6.6	43
2	Recent advances in drug delivery to the central nervous system by inhalation. Expert Opinion on Drug Delivery, 2022, , .	2.4	1
3	Phage–Antibiotic Therapy as a Promising Strategy to Combat Multidrug-Resistant Infections and to Enhance Antimicrobial Efficiency. Antibiotics, 2022, 11, 570.	1.5	24
4	Inhalable Hydroxychloroquine Powders for Potential Treatment of COVID-19. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2021, 34, 20-31.	0.7	16
5	Generation and characterization of electrostatically charged radiolabelled aerosols for lung scintigraphy. Aerosol Science and Technology, 2021, 55, 640-652.	1.5	2
6	A 3D printed human upper respiratory tract model for particulate deposition profiling. International Journal of Pharmaceutics, 2021, 597, 120307.	2.6	12
7	Administration of dry powders during respiratory supports. Annals of Translational Medicine, 2021, 9, 596-596.	0.7	4
8	Advances in Inhalation Drug Delivery. Current Pharmaceutical Design, 2021, 27, 1435-1435.	0.9	1
9	Co-spray dried hydrophobic drug formulations with crystalline lactose for inhalation aerosol delivery. International Journal of Pharmaceutics, 2021, 602, 120608.	2.6	6
10	Nebulised Isotonic Hydroxychloroquine Aerosols for Potential Treatment of COVID-19. Pharmaceutics, 2021, 13, 1260.	2.0	11
11	In vitro-in vivo correlation of cascade impactor data for orally inhaled pharmaceutical aerosols. Advanced Drug Delivery Reviews, 2021, 177, 113952.	6.6	13
12	In vitro-in vivo correlation of pharmaceutical aerosols. Advanced Drug Delivery Reviews, 2021, 179, 114025.	6.6	0
13	Spray-Dried Powder Formulation of Capreomycin Designed for Inhaled Tuberculosis Therapy. Pharmaceutics, 2021, 13, 2044.	2.0	7
14	Spray drying lactose from organic solvent suspensions for aerosol delivery to the lungs. International Journal of Pharmaceutics, 2020, 591, 119984.	2.6	11
15	Cough as an adverse effect on inhalation pharmaceutical products. British Journal of Pharmacology, 2020, 177, 4096-4112.	2.7	19
16	A phospholipid-based formulation for the treatment of airway inflammation in chronic respiratory diseases. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 157, 47-58.	2.0	15
17	Converting nanosuspension into inhalable and redispersible nanoparticles by combined in-situ thermal gelation and spray drying. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 149, 238-247.	2.0	28
18	In vivo deposition study of a new generation nebuliser utilising hybrid resonant acoustic (HYDRA) technology. International Journal of Pharmaceutics, 2020, 580, 119196.	2.6	9

#	Article	IF	CITATIONS
19	Pharmaceutical Applications of 3D Printing. Additive Manufacturing, 2020, 34, 101209.	1.7	52
20	Predicting the composition and size distribution of dry particles for aerosols and sprays of suspension: A Monte Carlo approach. International Journal of Pharmaceutics, 2020, 582, 119311.	2.6	8
21	Inhalable bacteriophage powders: Glass transition temperature and bioactivity stabilization. Bioengineering and Translational Medicine, 2020, 5, e10159.	3.9	35
22	Effect of formulation and inhaler parameters on the dispersion of spray freeze dried voriconazole particles. International Journal of Pharmaceutics, 2020, 584, 119444.	2.6	23
23	Integrated Continuous Plug-Flow Crystallization and Spray Drying of Pharmaceuticals for Dry Powder Inhalation. Industrial & Engineering Chemistry Research, 2019, 58, 16843-16857.	1.8	17
24	High siRNA loading powder for inhalation prepared by co-spray drying with human serum albumin. International Journal of Pharmaceutics, 2019, 572, 118818.	2.6	16
25	Cocrystal Engineering of Itraconazole with Suberic Acid via Rotary Evaporation and Spray Drying. Crystal Growth and Design, 2019, 19, 2736-2745.	1.4	36
26	Porous and highly dispersible voriconazole dry powders produced by spray freeze drying for pulmonary delivery with efficient lung deposition. International Journal of Pharmaceutics, 2019, 560, 144-154.	2.6	42
27	Spray-Dried Particles of Nitric Oxide-Modified Glutathione for the Treatment of Chronic Lung Infection. Molecular Pharmaceutics, 2019, 16, 1723-1731.	2.3	2
28	Studies of Radioaerosol Deposition in the Respiratory Tract. Seminars in Nuclear Medicine, 2019, 49, 62-70.	2.5	10
29	Pharmacokinetic and pharmacodynamic study of intranasal and intravenous dexmedetomidine. British Journal of Anaesthesia, 2018, 120, 960-968.	1.5	94
30	Spray freeze drying of small nucleic acids as inhaled powder for pulmonary delivery. Asian Journal of Pharmaceutical Sciences, 2018, 13, 163-172.	4.3	48
31	A review on recent technologies for the manufacture of pulmonary drugs. Therapeutic Delivery, 2018, 9, 47-70.	1.2	29
32	Using two-fluid nozzle for spray freeze drying to produce porous powder formulation of naked siRNA for inhalation. International Journal of Pharmaceutics, 2018, 552, 67-75.	2.6	38
33	Effect of Spacers on the Bipolar Electrostatic Charge Properties of Metered Dose Inhaler Aerosols—A Case Study With Tilade®. Journal of Pharmaceutical Sciences, 2017, 106, 1553-1559.	1.6	8
34	Inhaled powder formulation of naked siRNA using spray drying technology with l-leucine as dispersion enhancer. International Journal of Pharmaceutics, 2017, 530, 40-52.	2.6	50
35	Pharmacokinetics and pharmacodynamics of dexmedetomidine. Drug Development and Industrial Pharmacy, 2016, 42, 1917-1927.	0.9	29
36	Bipolar electrostatic charge and mass distributions of powder aerosols– Effects of inhaler design and inhaler material. Journal of Aerosol Science, 2016, 95, 104-117.	1.8	6

#	Article	IF	CITATIONS
37	Measuring Bipolar Charge and Mass Distributions of Powder Aerosols by a Novel Tool (BOLAR). Molecular Pharmaceutics, 2015, 12, 3433-3440.	2.3	15
38	Inhalable Dry Powder Formulations of siRNA and pH-Responsive Peptides with Antiviral Activity Against H1N1 Influenza Virus. Molecular Pharmaceutics, 2015, 12, 910-921.	2.3	41
39	Inhalable spray-dried formulation of D-LAK antimicrobial peptides targeting tuberculosis. International Journal of Pharmaceutics, 2015, 491, 367-374.	2.6	37
40	Oleanolic Acid Loaded PEGylated PLA and PLGA Nanoparticles with Enhanced Cytotoxic Activity against Cancer Cells. Molecular Pharmaceutics, 2015, 12, 2112-2125.	2.3	38
41	Pharmaceutical aerosol electrostatics: a field with much potential for development. Therapeutic Delivery, 2015, 6, 105-107.	1.2	2
42	Electrostatics in pharmaceutical solids. Chemical Engineering Science, 2015, 125, 225-237.	1.9	50
43	Electrostatics of Pharmaceutical Aerosols for Pulmonary Delivery. Current Pharmaceutical Design, 2015, 21, 3945-3954.	0.9	8
44	Delivery of inhalation drugs to children for asthma and other respiratory diseases. Advanced Drug Delivery Reviews, 2014, 73, 83-88.	6.6	38
45	Formulation of pH responsive peptides as inhalable dry powders for pulmonary delivery of nucleic acids. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 86, 64-73.	2.0	49
46	Effect of Crystallinity on Electrostatic Charging in Dry Powder Inhaler Formulations. Pharmaceutical Research, 2014, 31, 1656-1664.	1.7	26
47	Bioactive proteins and peptides isolated from Chinese medicines with pharmaceutical potential. Chinese Medicine, 2014, 9, 19.	1.6	36
48	Nanotechnology Versus other Techniques in Improving Drug Dissolution. Current Pharmaceutical Design, 2014, 20, 474-482.	0.9	36
49	Electrostatics in pharmaceutical aerosols for inhalation. Therapeutic Delivery, 2013, 4, 981-1002.	1.2	33
50	Aerosol Delivery of Nanoparticles in Uniform Mannitol Carriers Formulated by Ultrasonic Spray Freeze Drying. Pharmaceutical Research, 2013, 30, 2891-2901.	1.7	55
51	Pulmonary drug delivery. Therapeutic Delivery, 2013, 4, 877-878.	1.2	6
52	The production of dry powder by the sonocrystallisation for inhalation drug delivery. Powder Technology, 2013, 246, 337-344.	2.1	9
53	Evaluation of the Correlation between Focal Adhesion Kinase Phosphorylation and Cell Adhesion Force Using "DEP―Technology. Sensors, 2012, 12, 5951-5965.	2.1	7
54	Delivery of High Solubility Polyols by Vibrating Mesh Nebulizer to Enhance Mucociliary Clearance. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2012, 25, 297-305.	0.7	12

#	Article	IF	CITATIONS
55	The Comparison of the Effect of Oat and Shiitake Mushroom Powder to Prevent Body Weight Gain in Rats Fed High Fat Diet. Food and Nutrition Sciences (Print), 2012, 03, 1009-1019.	0.2	12
56	Does the United States Pharmacopeia Throat Introduce De-agglomeration of Carrier-Free Powder from Inhalers?. Pharmaceutical Research, 2012, 29, 1797-1807.	1.7	22
57	Constant size, variable density aerosol particles by ultrasonic spray freeze drying. International Journal of Pharmaceutics, 2012, 427, 185-191.	2.6	63
58	Enhanced dissolution of inhalable cyclosporine nano-matrix particles with mannitol as matrix former. International Journal of Pharmaceutics, 2011, 420, 34-42.	2.6	67
59	Production methods for nanodrug particles using the bottom-up approach. Advanced Drug Delivery Reviews, 2011, 63, 406-416.	6.6	351
60	Formation of Protein Nano-Matrix Particles with Controlled Surface Architecture for Respiratory Drug Delivery. Pharmaceutical Research, 2011, 28, 788-796.	1.7	35
61	Mannitol Delivery by Vibrating Mesh Nebulisation for Enhancing Mucociliary Clearance. Journal of Pharmaceutical Sciences, 2011, 100, 2693-2702.	1.6	13
62	Osteoblasts on Rod Shaped Hydroxyapatite Nanoparticles Incorporated PCL Film Provide an Optimal Osteogenic Niche for Stem Cell Differentiation. Tissue Engineering - Part A, 2011, 17, 1651-1661.	1.6	33
63	Pulmonary Delivery of Peptides and Proteins. , 2011, , 23-46.		9
64	Can low-dose combination products for inhalation be formulated in single crystalline particles?. European Journal of Pharmaceutical Sciences, 2010, 40, 16-24.	1.9	32
65	Does electrostatic charge affect powder aerosolisation?. Journal of Pharmaceutical Sciences, 2010, 99, 2455-2461.	1.6	23
66	Particle sizes of talc for pleurodesis available in Australia. Internal Medicine Journal, 2010, 40, 316-318.	0.5	2
67	Electrostatic Charge Characteristics of Jet Nebulized Aerosols. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2010, 23, 149-159.	0.7	24
68	Electrostatics of pharmaceutical inhalation aerosols. Journal of Pharmacy and Pharmacology, 2010, 61, 1587-1599.	1.2	30
69	Lactose Composite Carriers for Respiratory Delivery. Pharmaceutical Research, 2009, 26, 802-810.	1.7	49
70	Electrostatics of pharmaceutical inhalation aerosols. Journal of Pharmacy and Pharmacology, 2009, 61, 1587-1599.	1.2	13
71	Effect of Relative Humidity on the Electrostatic Charge Properties of Dry Powder Inhaler Aerosols. Pharmaceutical Research, 2008, 25, 277-288.	1.7	63
72	Effect of moisture on the electrostatic charge properties of metered dose inhaler aerosols. Journal of Aerosol Science, 2008, 39, 211-226.	1.8	22

#	Article	IF	CITATIONS
73	Influence of Humidity on the Electrostatic Charge and Aerosol Performance of Dry Powder Inhaler Carrier based Systems. Pharmaceutical Research, 2007, 24, 963-970.	1.7	103
74	Effect of spacers on the electrostatic charge properties of metered dose inhaler aerosols. Journal of Aerosol Science, 2006, 37, 1671-1682.	1.8	27
75	Electrostatic charge characteristics of aerosols produced from metered dose inhalers. Journal of Pharmaceutical Sciences, 2005, 94, 2789-2799.	1.6	65