
Jia-De Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4962784/publications.pdf Version: 2024-02-01

IIA-DE LIN

#	Article	IF	CITATIONS
1	Wavelength-Tunable and Highly Stable Perovskite-Quantum-Dot-Doped Lasers with Liquid Crystal Lasing Cavities. ACS Applied Materials & Interfaces, 2018, 10, 33307-33315.	8.0	62
2	Electrically controllable liquid crystal random lasers below the Fréedericksz transition threshold. Optics Express, 2011, 19, 2391.	3.4	55
3	An optically stable and tunable quantum dot nanocrystal-embedded cholesteric liquid crystal composite laser. Journal of Materials Chemistry C, 2014, 2, 4388-4394.	5.5	54
4	Optically tunable/switchable omnidirectionally spherical microlaser based on a dye-doped cholesteric liquid crystal microdroplet with an azo-chiral dopant. Optics Express, 2013, 21, 15765.	3.4	50
5	Bio-inspired design of active photo-mechano-chemically dual-responsive photonic film based on cholesteric liquid crystal elastomers. Journal of Materials Chemistry C, 2020, 8, 5517-5524.	5.5	40
6	All-optically controllable random laser based on a dye-doped liquid crystal added with a photoisomerizable dye. Optics Express, 2010, 18, 25896.	3.4	39
7	Spatially Patterned Polymer Dispersed Liquid Crystals for Imageâ€Integrated Smart Windows. Advanced Optical Materials, 2022, 10, .	7.3	36
8	Electrically and thermally controllable nanoparticle random laser in a well-aligned dye-doped liquid crystal cell. Optical Materials Express, 2015, 5, 1469.	3.0	34
9	Wide-band tunable photonic bandgaps based on nematic-refilling cholesteric liquid crystal polymer template samples. Optical Materials Express, 2015, 5, 1419.	3.0	33
10	Optically controllable photonic crystals and passively tunable terahertz metamaterials using dye-doped liquid crystal cells. Journal of Materials Chemistry C, 2018, 6, 4959-4966.	5.5	29
11	Thermally and Electrically Tunable Lasing Emission and Amplified Spontaneous Emission in a Composite of Inorganic Quantum Dot Nanocrystals and Organic Cholesteric Liquid Crystals. Advanced Optical Materials, 2013, 1, 637-643.	7.3	27
12	Label-Free Multi-Microfluidic Immunoassays with Liquid Crystals on Polydimethylsiloxane Biosensing Chips. Polymers, 2020, 12, 395.	4.5	26
13	Label-free, color-indicating, and sensitive biosensors of cholesteric liquid crystals on a single vertically aligned substrate. Biomedical Optics Express, 2019, 10, 4636.	2.9	26
14	Widely tunable photonic bandgap and lasing emission in enantiomorphic cholesteric liquid crystal templates. Journal of Materials Chemistry C, 2017, 5, 3222-3228.	5.5	22
15	Photothermal-Irradiated Polyethyleneimine–Polypyrrole Nanopigment Film-Coated Polyethylene Fabrics for Infrared-Inspired with Pathogenic Evaluation. ACS Applied Materials & Interfaces, 2021, 13, 2483-2495.	8.0	22
16	Photosensitive and all-optically fast-controllable photonic bandgap device and laser in a dye-doped blue phase with a low-concentration azobenzene liquid crystal. Optics Express, 2014, 22, 9171.	3.4	21
17	Spatially tunable photonic bandgap of wide spectral range and lasing emission based on a blue phase wedge cell. Optics Express, 2014, 22, 29479.	3.4	20
18	Wide-Band Spatially Tunable Photonic Bandgap in Visible Spectral Range and Laser based on a Polymer Stabilized Blue Phase. Scientific Reports, 2016, 6, 30407.	3.3	19

JIA-DE LIN

#	Article	IF	CITATIONS
19	Toward Fullâ€Color Tunable Chiroptical Electrothermochromic Devices Based on a Supramolecular Chiral Photonic Material. Advanced Optical Materials, 2021, 9, 2001796.	7.3	19
20	Optically controllable and focus-tunable Fresnel lens in azo-dye-doped liquid crystals using a Sagnac interferometer. Optics Letters, 2011, 36, 1311.	3.3	18
21	Morphological appearances and photo-controllable coloration of dye-doped cholesteric liquid crystal/polymer coaxial microfibers fabricated by coaxial electrospinning technique. Optics Express, 2016, 24, 3112.	3.4	18
22	A broadban-tunable photonic bandgap and thermally convertible laser with an ultra-low lasing threshold from a refilled chiral polymer template. Journal of Materials Chemistry C, 2019, 7, 4740-4747.	5.5	18
23	Evidence of near-infrared partial photonic bandgap in polymeric rod-connected diamond structures. Optics Express, 2015, 23, 26565.	3.4	17
24	Electrically Tunable Liquid-Crystal–Polymer Composite Laser with Symmetric Sandwich Structure. Macromolecules, 2020, 53, 913-921.	4.8	17
25	All-optically controllable dye-doped liquid crystal infiltrated photonic crystal fiber. Optics Express, 2011, 19, 9676.	3.4	16
26	Ultralow-threshold single-mode lasing based on a one-dimensional asymmetric photonic bandgap structure with liquid crystal as a defect layer. Optics Letters, 2014, 39, 3516.	3.3	14
27	Microstructure-Stabilized Blue Phase Liquid Crystals. ACS Omega, 2018, 3, 15435-15441.	3.5	14
28	A Thinâ€Film Flexible Defectâ€Mode Laser. Advanced Optical Materials, 2020, 8, 1901891.	7.3	14
29	Optical and electro-optic properties of polymer-stabilized blue phase liquid crystal cells with photoalignment layers. Optics Express, 2017, 25, 28179.	3.4	13
30	All-optically controllable distributed feedback laser in a dye-doped holographic polymer-dispersed liquid crystal grating with a photoisomerizable dye. Optics Express, 2010, 18, 2613.	3.4	12
31	Programmable Engineering of Sunlight-Fueled, Full-Wavelength-Tunable, and Chirality-Invertible Helical Superstructures. ACS Applied Materials & Interfaces, 2021, 13, 55550-55558.	8.0	12
32	Performance evolution of color cone lasing emissions in dye-doped cholesteric liquid crystals at different fabrication conditions. Optics Express, 2015, 23, 10168.	3.4	10
33	Electrically Tunable Printed Bifocal Liquid Crystal Microlens Arrays. Advanced Materials Interfaces, 2020, 7, 2000578.	3.7	9
34	Multi-wavelength laser tuning based on cholesteric liquid crystals with nanoparticles. Journal Physics D: Applied Physics, 2016, 49, 165102.	2.8	8
35	Fast and low loss flexoelectro-optic liquid crystal phase modulator with a chiral nematic reflector. Scientific Reports, 2019, 9, 7016.	3.3	8
36	Color-Indicating, Label-Free, Dye-Doped Liquid Crystal Organic-Polymer-Based-Bioinspired Sensor for Biomolecule Immunodetection. Polymers, 2020, 12, 2294.	4.5	8

JIA-DE LIN

#	Article	IF	CITATIONS
37	Unique spatial continuously tunable cone laser based on a dye-doped cholesteric liquid crystal with a birefringence gradient. Applied Physics B: Lasers and Optics, 2012, 109, 159-163.	2.2	7
38	Optical Properties of Electrically Active Gold Nanoisland Films Enabled with Interfaced Liquid Crystals. Nanomaterials, 2020, 10, 290.	4.1	7
39	Microâ€Lifting Jack: Heat―and Lightâ€Fueled 3D Symmetric Deformation of Braggâ€Onionâ€Like Beads with Fu Polymerized Chiral Networks. Advanced Optical Materials, 2021, 9, 2100667.	Illy _{.3}	7
40	Circular Polarization and Wavelength Selective Gratings Based on Holographic Cholesteric Liquid Crystal Templates. Advances in Condensed Matter Physics, 2018, 2018, 1-8.	1.1	5
41	Ultraâ€Broadband Tunable Bragg–Berry Optical Vortex Generators of a Circularly Symmetric Chiroptic Structure. Advanced Optical Materials, 0, , 2100746.	7.3	5
42	Control of Large-Area Orderliness of a 2D Supramolecular Chiral Microstructure by a 1D Interference Field. ACS Applied Materials & Interfaces, 2021, 13, 44916-44924.	8.0	4
43	All-Optically Controllable Photonic Crystals Based on Chiral-Azobenzene-Doped Blue Phase Liquid Crystals. Crystals, 2020, 10, 906.	2.2	3
44	A Planar Fresnel Lens in Reflection Type Based on Azo-Dye-Doped Cholesteric Liquid Crystals Fabricated by Photo-Alignment. Polymers, 2020, 12, 2972.	4.5	3
45	All-Optical Directional Control of Emission in a Photonic Liquid Crystal Fiber Laser. Journal of Lightwave Technology, 2020, 38, 5149-5156.	4.6	3
46	Wide-band tunable photonic bandgap device and laser in dye-doped liquid crystal refilled cholesteric liquid crystal polymer template system. , 2017, , .		2
47	Transmissive flexoelectro-optic liquid crystal optical phase modulator with 2Ï€ modulation. AIP Advances, 2020, 10, 055011.	1.3	2
48	Improvement of the Centrifugal Force in Gravity Driven Method for the Fabrication of Highly Ordered and Submillimeter-Thick Colloidal Crystal. Polymers, 2021, 13, 692.	4.5	2
49	Thermal and optical manipulation of morphology in cholesteric liquid crystal microdroplets constrained on microfibers. Journal of Molecular Liquids, 2021, 328, 115383.	4.9	2
50	Light‣witching Surface Wettability of Chiral Liquid Crystal Networks by Dynamic Change in Nanoscale Topography. Macromolecular Rapid Communications, 2021, , 2100736.	3.9	2
51	Liquid Crystals: Thermally and Electrically Tunable Lasing Emission and Amplified Spontaneous Emission in a Composite of Inorganic Quantum Dot Nanocrystals and Organic Cholesteric Liquid Crystals (Advanced Optical Materials 9/2013). Advanced Optical Materials, 2013, 1, 678-678.	7.3	1
52	Electrohydrodynamics-Induced Abnormal Electro-Optic Characteristics in a Polymer-Dispersed Liquid Crystal Film. Crystals, 2017, 7, 227.	2.2	1
53	All-Optical and Polarization-Independent Tunable Guided-Mode Resonance Filter Based on a Dye-Doped Liquid Crystal Incorporated With Photonic Crystal Nanostructure. Journal of Lightwave Technology, 2020, 38, 820-826.	4.6	1
54	Flexible Lasers: A Thinâ€Film Flexible Defectâ€Mode Laser (Advanced Optical Materials 8/2020). Advanced Optical Materials, 2020, 8, 2070034.	7.3	1

JIA-DE LIN

#	Article	IF	CITATIONS
55	Enantiomorphic double-polymerized chiral polymer composite template for highly efficient energy-saving green window. Polymer, 2020, 200, 122586.	3.8	1
56	Electrically and all-optically controllable random lasers based on dye-doped liquid crystal films. Proceedings of SPIE, 2012, , .	0.8	0
57	External-Voltage-Free Dielectrophoresis of Liquid Crystal Droplets. Crystals, 2017, 7, 202.	2.2	0
58	Soft Matter Photonics. Advances in Condensed Matter Physics, 2018, 2018, 1-2.	1.1	0
59	Micro-/Nanostructure-Stabilized Liquid-Crystalline Blue-Phase. , 2019, , .		Ο
60	Low-voltage tunable color in full visible region using ferroelectric liquid-crystal-doped cholesteric liquid-crystal smart materials. , 2018, , .		0
61	The realization of nipip HIT photodetectors with an optimized thickness of intrinsic a-Si:H. Materials Science in Semiconductor Processing, 2022, 144, 106590.	4.0	Ο
62	Controllable Liquid Crystal Micro Tube Laser. Crystals, 2021, 11, 1510.	2.2	0