
Lana Shabala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4962466/publications.pdf Version: 2024-02-01

Ι ΑΝΙΑ SHABALA

#	Article	IF	CITATIONS
1	Extracellular Ca2+ Ameliorates NaCl-Induced K+ Loss from Arabidopsis Root and Leaf Cells by Controlling Plasma Membrane K+-Permeable Channels. Plant Physiology, 2006, 141, 1653-1665.	2.3	418
2	Salinity-induced ion flux patterns from the excised roots of Arabidopsis sos mutants. Planta, 2005, 222, 1041-1050.	1.6	223
3	Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (<i>Chenopodium quinoa </i>). Physiologia Plantarum, 2012, 146, 26-38.	2.6	181
4	Effect of calcium on root development and root ion fluxes in salinised barley seedlings. Functional Plant Biology, 2003, 30, 507.	1.1	177
5	Cell-Type-Specific H ⁺ -ATPase Activity in Root Tissues Enables K ⁺ Retention and Mediates Acclimation of Barley (<i>Hordeum vulgare</i>) to Salinity Stress. Plant Physiology, 2016, 172, 2445-2458.	2.3	158
6	Hydroxyl radical scavenging by cerium oxide nanoparticles improves <i>Arabidopsis</i> salinity tolerance by enhancing leaf mesophyll potassium retention. Environmental Science: Nano, 2018, 5, 1567-1583.	2.2	147
7	Salinity-Induced Calcium Signaling and Root Adaptation in Arabidopsis Require the Calcium Regulatory Protein Annexin1 Â Â. Plant Physiology, 2013, 163, 253-262.	2.3	132
8	K ⁺ retention in leaf mesophyll, an overlooked component of salinity tolerance mechanism: A case study for barley. Journal of Integrative Plant Biology, 2015, 57, 171-185.	4.1	132
9	Membrane transporters mediating root signalling and adaptive responses to oxygen deprivation and soil flooding. Plant, Cell and Environment, 2014, 37, 2216-2233.	2.8	130
10	Cell surface and intracellular auxin signalling for H+ fluxes in root growth. Nature, 2021, 599, 273-277.	13.7	128
11	Difference in root K ⁺ retention ability and reduced sensitivity of K ⁺ -permeable channels to reactive oxygen species confer differential salt tolerance in three <i>Brassica</i> species. Journal of Experimental Botany, 2016, 67, 4611-4625.	2.4	127
12	The Venus Flytrap Dionaea muscipula Counts Prey-Induced Action Potentials to Induce Sodium Uptake. Current Biology, 2016, 26, 286-295.	1.8	127
13	Transcriptional stimulation of rate-limiting components of the autophagic pathway improves plant fitness. Journal of Experimental Botany, 2018, 69, 1415-1432.	2.4	120
14	lon transport and osmotic adjustment in <i>Escherichia coli</i> in response to ionic and nonâ€ionic osmotica. Environmental Microbiology, 2009, 11, 137-148.	1.8	113
15	Ability of leaf mesophyll to retain potassium correlates with salinity tolerance in wheat and barley. Physiologia Plantarum, 2013, 149, 515-527.	2.6	113
16	Annexin 1 regulates the <scp>H</scp> ₂ <scp>O</scp> ₂ â€induced calcium signature in <i><scp>A</scp>rabidopsis thaliana</i> roots. Plant Journal, 2014, 77, 136-145.	2.8	109
17	Kinetics of xylem loading, membrane potential maintenance, and sensitivity of <scp><scp>K⁺</scp></scp> a€permeable channels to reactive oxygen species: physiological traits that differentiate salinity tolerance between pea and barley. Plant, Cell and Environment, 2014, 37, 589-600.	2.8	107
18	Cyclopropane fatty acids improve Escherichia coli survival in acidified minimal media by reducing membrane permeability to H+ and enhanced ability to extrude H+. Research in Microbiology, 2008, 159, 458-461.	1.0	104

#	Article	IF	CITATIONS
19	Ion transport and osmotic adjustment in plants and bacteria. Biomolecular Concepts, 2011, 2, 407-419.	1.0	104
20	Calcium sensor kinase activates potassium uptake systems in gland cells of Venus flytraps. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7309-7314.	3.3	98
21	Non-invasive microelectrode ion flux measurements to study adaptive responses of microorganisms to the environment. FEMS Microbiology Reviews, 2006, 30, 472-486.	3.9	97
22	Differential Activity of Plasma and Vacuolar Membrane Transporters Contributes to Genotypic Differences in Salinity Tolerance in a Halophyte Species, Chenopodium quinoa. International Journal of Molecular Sciences, 2013, 14, 9267-9285.	1.8	96
23	<i>Nax</i> loci affect SOS1-like Na ⁺ /H ⁺ exchanger expression and activity in wheat. Journal of Experimental Botany, 2016, 67, 835-844.	2.4	95
24	Melatonin improves rice salinity stress tolerance by <scp>NADPH</scp> oxidaseâ€dependent control of the plasma membrane K ⁺ transporters and K ⁺ homeostasis. Plant, Cell and Environment, 2020, 43, 2591-2605.	2.8	93
25	Meta-analysis of major QTL for abiotic stress tolerance in barley and implications for barley breeding. Planta, 2017, 245, 283-295.	1.6	91
26	Molecular mechanisms of salinity tolerance in rice. Crop Journal, 2021, 9, 506-520.	2.3	91
27	Barley responses to combined waterlogging and salinity stress: separating effects of oxygen deprivation and elemental toxicity. Frontiers in Plant Science, 2013, 4, 313.	1.7	90
28	Salinity-induced accumulation of organic osmolytes in barley and wheat leaves correlates with increased oxidative stress tolerance: InÂplanta evidence for cross-tolerance. Plant Physiology and Biochemistry, 2014, 83, 32-39.	2.8	90
29	Tissue-specific respiratory burst oxidase homolog-dependent H2O2 signaling to the plasma membrane H+-ATPase confers potassium uptake and salinity tolerance in Cucurbitaceae. Journal of Experimental Botany, 2019, 70, 5879-5893.	2.4	90
30	Physiological and molecular mechanisms mediating xylem Na ⁺ loading in barley in the context of salinity stress tolerance. Plant, Cell and Environment, 2017, 40, 1009-1020.	2.8	89
31	Effect of divalent cations on ion fluxes and leaf photochemistry in salinized barley leaves. Journal of Experimental Botany, 2005, 56, 1369-1378.	2.4	86
32	Linking salinity stress tolerance with tissue-specific Na+ sequestration in wheat roots. Frontiers in Plant Science, 2015, 6, 71.	1.7	86
33	Oscillations in plant membrane transport: model predictions, experimental validation, and physiological implications. Journal of Experimental Botany, 2006, 57, 171-184.	2.4	83
34	Root vacuolar Na ⁺ sequestration but not exclusion from uptake correlates with barley salt tolerance. Plant Journal, 2019, 100, 55-67.	2.8	80
35	An early ABA-induced stomatal closure, Na+ sequestration in leaf vein and K+ retention in mesophyll confer salt tissue tolerance in Cucurbita species. Journal of Experimental Botany, 2018, 69, 4945-4960.	2.4	77
36	Rutin, a flavonoid with antioxidant activity, improves plant salinity tolerance by regulating K+ retention and Na+ exclusion from leaf mesophyll in quinoa and broad beans. Functional Plant Biology, 2016, 43, 75.	1.1	76

#	Article	IF	CITATIONS
37	Na+ extrusion from the cytosol and tissue-specific Na+ sequestration in roots confer differential salt stress tolerance between durum and bread wheat. Journal of Experimental Botany, 2018, 69, 3987-4001.	2.4	73
38	GABA operates upstream of H+-ATPase and improves salinity tolerance in Arabidopsis by enabling cytosolic K+ retention and Na+ exclusion. Journal of Experimental Botany, 2019, 70, 6349-6361.	2.4	73
39	GORK Channel: A Master Switch of Plant Metabolism?. Trends in Plant Science, 2020, 25, 434-445.	4.3	73
40	Waterlogging tolerance in barley is associated with faster aerenchyma formation in adventitious roots. Plant and Soil, 2015, 394, 355-372.	1.8	72
41	Piriformospora indica improves salinity stress tolerance in Zea mays L. plants by regulating Na+ and K+ loading in root and allocating K+ in shoot. Plant Growth Regulation, 2018, 86, 323-331.	1.8	71
42	Tissue-Specific Regulation of Na+ and K+ Transporters Explains Genotypic Differences in Salinity Stress Tolerance in Rice. Frontiers in Plant Science, 2019, 10, 1361.	1.7	67
43	Effect of Secondary Metabolites Associated with Anaerobic Soil Conditions on Ion Fluxes and Electrophysiology in Barley Roots. Plant Physiology, 2007, 145, 266-276.	2.3	63
44	Acid and NaCl Limits to Growth of Listeria monocytogenes and Influence of Sequence of Inimical Acid and NaCl Levels on Inactivation Kinetics. Journal of Food Protection, 2008, 71, 1169-1177.	0.8	61
45	Kinetics of net H+ , Ca2+ , K+ , Na+ , , and Cl- fluxes associated with post-chilling recovery of plasma membrane transporters in Zea mays leaf and root tissues. Physiologia Plantarum, 2002, 114, 47-56.	2.6	59
46	The Native Copper- and Zinc- Binding Protein Metallothionein Blocks Copper-Mediated AÎ ² Aggregation and Toxicity in Rat Cortical Neurons. PLoS ONE, 2010, 5, e12030.	1.1	58
47	Potassium retention in leaf mesophyll as an element of salinity tissue tolerance in halophytes. Plant Physiology and Biochemistry, 2016, 109, 346-354.	2.8	58
48	Evaluating relative contribution of osmotolerance and tissue tolerance mechanisms toward salinity stress tolerance in three <i>Brassica</i> species. Physiologia Plantarum, 2016, 158, 135-151.	2.6	58
49	Identification of aerenchyma formation-related QTL in barley that can be effective in breeding for waterlogging tolerance. Theoretical and Applied Genetics, 2016, 129, 1167-1177.	1.8	58
50	Back to the Wild: On a Quest for Donors Toward Salinity Tolerant Rice. Frontiers in Plant Science, 2020, 11, 323.	1.7	54
51	Linking oxidative and salinity stress tolerance in barley: can root antioxidant enzyme activity be used as a measure of stress tolerance?. Plant and Soil, 2013, 365, 141-155.	1.8	53
52	Sequential depolarization of root cortical and stelar cells induced by an acute salt shock – implications for Na ⁺ and K ⁺ transport into xylem vessels. Plant, Cell and Environment, 2011, 34, 859-869.	2.8	51
53	Insect haptoelectrical stimulation of Venus flytrap triggers exocytosis in gland cells. Proceedings of the United States of America, 2017, 114, 4822-4827.	3.3	50
54	A new major-effect QTL for waterlogging tolerance in wild barley (H. spontaneum). Theoretical and Applied Genetics, 2017, 130, 1559-1568.	1.8	50

#	Article	IF	CITATIONS
55	Residual transpiration as a component of salinity stress tolerance mechanism: a case study for barley. BMC Plant Biology, 2017, 17, 107.	1.6	49
56	Hydrogen Peroxide-Induced Root Ca2+ and K+ Fluxes Correlate with Salt Tolerance in Cereals: Towards the Cell-Based Phenotyping. International Journal of Molecular Sciences, 2018, 19, 702.	1.8	49
57	Electrical signalling and cytokinins mediate effects of light and root cutting on ion uptake in intact plants. Plant, Cell and Environment, 2009, 32, 194-207.	2.8	48
58	Durum and Bread Wheat Differ in Their Ability to Retain Potassium in Leaf Mesophyll: Implications for Salinity Stress Tolerance. Plant and Cell Physiology, 2014, 55, 1749-1762.	1.5	48
59	Cyclic mononucleotides modulate potassium and calcium flux responses to H ₂ O ₂ in Arabidopsis roots. FEBS Letters, 2014, 588, 1008-1015.	1.3	48
60	Exogenously Applied 24-Epibrassinolide (EBL) Ameliorates Detrimental Effects of Salinity by Reducing K+ Efflux via Depolarization-Activated K+ Channels. Plant and Cell Physiology, 2017, 58, 802-810.	1.5	48
61	Hypoxia-induced increase in GABA content is essential for restoration of membrane potential and preventing ROS-induced disturbance to ion homeostasis. Plant Communications, 2021, 2, 100188.	3.6	47
62	Responses of Listeria monocytogenes to Acid Stress and Glucose Availability Revealed by a Novel Combination of Fluorescence Microscopy and Microelectrode Ion-Selective Techniques. Applied and Environmental Microbiology, 2002, 68, 1794-1802.	1.4	46
63	Revealing the roles of GORK channels and NADPH oxidase in acclimation to hypoxia in Arabidopsis. Journal of Experimental Botany, 2017, 68, erw378.	2.4	46
64	Measurements of net fluxes and extracellular changes of H+, Ca2+, K+, and NH4+ in Escherichia coli using ion-selective microelectrodes. Journal of Microbiological Methods, 2001, 46, 119-129.	0.7	45
65	Linking oxygen availability with membrane potential maintenance and <scp><scp>K</scp>⁺</scp> retention of barley roots: implications for waterlogging stress tolerance. Plant, Cell and Environment, 2014, 37, 2325-2338.	2.8	45
66	Linking osmotic adjustment and stomatal characteristics with salinity stress tolerance in contrasting barley accessions. Functional Plant Biology, 2015, 42, 252.	1.1	43
67	Responses of Listeria monocytogenes to acid stress and glucose availability monitored by measurements of intracellular pH and viable counts. International Journal of Food Microbiology, 2002, 75, 89-97.	2.1	42
68	Identification of QTL Related to ROS Formation under Hypoxia and Their Association with Waterlogging and Salt Tolerance in Barley. International Journal of Molecular Sciences, 2019, 20, 699.	1.8	42
69	Role of a Mitogen-Activated Protein Kinase Cascade in Ion Flux-Mediated Turgor Regulation in Fungi. Eukaryotic Cell, 2006, 5, 480-487.	3.4	41
70	K _{bg} and Kv1.3 channels mediate potassium efflux in the early phase of apoptosis in Jurkat T lymphocytes. American Journal of Physiology - Cell Physiology, 2009, 297, C1544-C1553.	2.1	41
71	Plasma membrane Ca ²⁺ transporters mediate virusâ€induced acquired resistance to oxidative stress. Plant, Cell and Environment, 2011, 34, 406-417.	2.8	41
72	Evidence for multiple receptors mediating RALFâ€ŧriggered Ca ²⁺ signaling and proton pump inhibition. Plant Journal, 2020, 104, 433-446.	2.8	40

#	Article	lF	CITATIONS
73	Listeria innocua and Lactobacillus delbrueckii subsp. bulgaricus employ different strategies to cope with acid stress. International Journal of Food Microbiology, 2006, 110, 1-7.	2.1	39
74	A comparative analysis of stomatal traits and photosynthetic responses in closely related halophytic and glycophytic species under saline conditions. Environmental and Experimental Botany, 2021, 181, 104300.	2.0	36
75	Calcium Efflux as a Component of the Hypersensitive Response of Nicotiana benthamiana to Pseudomonas syringae. Plant and Cell Physiology, 2008, 49, 40-46.	1.5	35
76	Factors determining stomatal and non-stomatal (residual) transpiration and their contribution towards salinity tolerance in contrasting barley genotypes. Environmental and Experimental Botany, 2018, 153, 10-20.	2.0	34
77	Understanding physiological and morphological traits contributing to drought tolerance in barley. Journal of Agronomy and Crop Science, 2019, 205, 129-140.	1.7	34
78	Calcium-Dependent Hydrogen Peroxide Mediates Hydrogen-Rich Water-Reduced Cadmium Uptake in Plant Roots. Plant Physiology, 2020, 183, 1331-1344.	2.3	34
79	Revealing mechanisms of salinity tissue tolerance in succulent halophytes: <scp>A</scp> case study for <scp><i>Carpobrotus rossi</i></scp> . Plant, Cell and Environment, 2018, 41, 2654-2667.	2.8	33
80	Plasma membrane H+ and K+ transporters are involved in the weak-acid preservative response of disparate food spoilage yeasts. Microbiology (United Kingdom), 2005, 151, 1995-2003.	0.7	32
81	Identification of new QTL for salt tolerance from rice variety Pokkali. Journal of Agronomy and Crop Science, 2020, 206, 202-213.	1.7	31
82	The ability to regulate voltage-gated K+-permeable channels in the mature root epidermis is essential for waterlogging tolerance in barley. Journal of Experimental Botany, 2018, 69, 667-680.	2.4	30
83	Osmotic adjustment and requirement for sodium in marine protist thraustochytrid. Environmental Microbiology, 2009, 11, 1835-1843.	1.8	29
84	Cell-Based Phenotyping Reveals QTL for Membrane Potential Maintenance Associated with Hypoxia and Salinity Stress Tolerance in Barley. Frontiers in Plant Science, 2017, 8, 1941.	1.7	29
85	The loss of RBOHD function modulates root adaptive responses to combined hypoxia and salinity stress in Arabidopsis. Environmental and Experimental Botany, 2019, 158, 125-135.	2.0	29
86	Lipid kinases PIP5K7 and PIP5K9 are required for polyamineâ€ŧriggered K ⁺ efflux in Arabidopsis roots. Plant Journal, 2020, 104, 416-432.	2.8	28
87	Developing and validating a high-throughput assay for salinity tissue tolerance in wheat and barley. Planta, 2015, 242, 847-857.	1.6	26
88	Antioxidant Enzymatic Activity and Osmotic Adjustment as Components of the Drought Tolerance Mechanism in Carex duriuscula. Plants, 2021, 10, 436.	1.6	25
89	Plant ionic relation and whole-plant physiological responses to waterlogging, salinity and their combination in barley. Functional Plant Biology, 2017, 44, 941.	1.1	24
90	Chloroplast-generated ROS dominate NaCl ⁻ induced K ⁺ efflux in wheat leaf mesophyll. Plant Signaling and Behavior, 2015, 10, e1013793.	1.2	23

#	Article	IF	CITATIONS
91	Changes in Expression Level of OsHKT1;5 Alters Activity of Membrane Transporters Involved in K+ and Ca2+ Acquisition and Homeostasis in Salinized Rice Roots. International Journal of Molecular Sciences, 2020, 21, 4882.	1.8	23
92	Homology Modeling Identifies Crucial Amino-Acid Residues That Confer Higher Na+ Transport Capacity of OcHKT1;5 from Oryza coarctata Roxb. Plant and Cell Physiology, 2020, 61, 1321-1334.	1.5	23
93	Ion transport in broad bean leaf mesophyll under saline conditions. Planta, 2014, 240, 729-743.	1.6	22
94	Comparing Kinetics of Xylem Ion Loading and Its Regulation in Halophytes and Glycophytes. Plant and Cell Physiology, 2020, 61, 403-415.	1.5	22
95	Sodium sequestration confers salinity tolerance in an ancestral wild rice. Physiologia Plantarum, 2021, 172, 1594-1608.	2.6	22
96	Near-isogenic lines developed for a major QTL on chromosome arm 4HL conferring Fusarium crown rot resistance in barley. Euphytica, 2016, 209, 555-563.	0.6	21
97	Ion Flux Measurements Using the MIFE Technique. Methods in Molecular Biology, 2013, 953, 171-183.	0.4	21
98	To exclude or to accumulate? Revealing the role of the sodium HKT1;5 transporter in plant adaptive responses to varying soil salinity. Plant Physiology and Biochemistry, 2021, 169, 333-342.	2.8	20
99	Extracellular Spermine Triggers a Rapid Intracellular Phosphatidic Acid Response in Arabidopsis, Involving PLDI [*] Activation and Stimulating Ion Flux. Frontiers in Plant Science, 2019, 10, 601.	1.7	19
100	Evolutionary Significance of NHX Family and NHX1 in Salinity Stress Adaptation in the Genus Oryza. International Journal of Molecular Sciences, 2022, 23, 2092.	1.8	19
101	Temperature influences waterlogging stress-induced damage in Arabidopsis through the regulation of photosynthesis and hypoxia-related genes. Plant Growth Regulation, 2019, 89, 143-152.	1.8	18
102	Leaf mesophyll K+ and Clâ '' fluxes and reactive oxygen species production predict rice salt tolerance at reproductive stage in greenhouse and field conditions. Plant Growth Regulation, 2020, 92, 53-64.	1.8	18
103	Understanding the mechanistic basis of adaptation of perennial <i>Sarcocornia quinqueflora</i> species to soil salinity. Physiologia Plantarum, 2021, 172, 1997-2010.	2.6	18
104	Fish gill damage by harmful microalgae newly explored by microelectrode ion flux estimation techniques. Harmful Algae, 2018, 80, 55-63.	2.2	17
105	Endomembrane Ca ²⁺ -ATPases play a significant role in virus-induced adaptation to oxidative stress. Plant Signaling and Behavior, 2011, 6, 1053-1056.	1.2	16
106	Microhair on the adaxial leaf surface of salt secreting halophytic Oryza coarctata Roxb. show distinct morphotypes: Isolation for molecular and functional analysis. Plant Science, 2019, 285, 248-257.	1.7	16
107	Developing a high-throughput phenotyping method for oxidative stress tolerance in barley roots. Plant Methods, 2019, 15, 12.	1.9	16
108	Distinct Evolutionary Origins of Intron Retention Splicing Events in NHX1 Antiporter Transcripts Relate to Sequence Specific Distinctions in Oryza Species. Frontiers in Plant Science, 2020, 11, 267.	1.7	16

#	Article	IF	CITATIONS
109	Prolonged Aβ treatment leads to impairment in the ability of primary cortical neurons to maintain K+ and Ca2+ homeostasis. Molecular Neurodegeneration, 2010, 5, 30.	4.4	15
110	Thraustochytrids Can Be Grown in Low-Salt Media Without Affecting PUFA Production. Marine Biotechnology, 2013, 15, 437-444.	1.1	15
111	Evaluation of salt tolerance and contributing ionic mechanism in nine Hami melon landraces in Xinjiang, China. Scientia Horticulturae, 2018, 237, 277-286.	1.7	14
112	Understanding the role of root-related traits in salinity tolerance of quinoa accessions with contrasting epidermal bladder cell patterning. Planta, 2020, 251, 103.	1.6	14
113	Conditioning of Roots with Hypoxia Increases Aluminum and Acid Stress Tolerance by Mitigating Activation of K ⁺ Efflux Channels by ROS in Barley: Insights into Cross-Tolerance Mechanisms. Plant and Cell Physiology, 2016, 57, 160-173.	1.5	13
114	Unravelling the physiological basis of salinity stress tolerance in cultivated and wild rice species. Functional Plant Biology, 2022, 49, 351-364.	1.1	12
115	A Thermodynamic Model of Monovalent Cation Homeostasis in the Yeast Saccharomyces cerevisiae. PLoS Computational Biology, 2016, 12, e1004703.	1.5	10
116	Quantifying Kinetics of Net Ion Fluxes from Plant Tissues by Non-invasive Microelectrode Measuring MIFE Technique. Methods in Molecular Biology, 2012, 913, 119-134.	0.4	9
117	Revealing the Role of the Calcineurin B-Like Protein-Interacting Protein Kinase 9 (CIPK9) in Rice Adaptive Responses to Salinity, Osmotic Stress, and K+ Deficiency. Plants, 2021, 10, 1513.	1.6	9
118	Effects of Verapamil and Gadolinium on Caffeine-Induced Contractures and Calcium Fluxes in Frog Slow Skeletal Muscle Fibers. Journal of Membrane Biology, 2008, 221, 7-13.	1.0	8
119	Understanding the mechanistic basis of ameliorating effects of hydrogen rich water on salinity tolerance in barley. Environmental and Experimental Botany, 2020, 177, 104136.	2.0	8
120	Root K+ homeostasis and signalling as a determinant of salinity stress tolerance in cultivated and wild rice species. Environmental and Experimental Botany, 2022, 201, 104944.	2.0	8
121	Mechanisms underlying turgor regulation in the estuarine alga <scp><i>V</i></scp> <i>aucheria erythrospora</i> (<scp>X</scp> anthophyceae) exposed to hyperosmotic shock. Plant, Cell and Environment, 2015, 38, 1514-1527.	2.8	7
122	Tissue-specificity of ROS-induced K+ and Ca2+ fluxes in succulent stems of the perennial halophyte Sarcocornia quinqueflora in the context of salinity stress tolerance. Plant Physiology and Biochemistry, 2021, 166, 1022-1031.	2.8	7
123	Cation transporters in cell fate determination and plant adaptive responses to a low-oxygen environment. Journal of Experimental Botany, 2022, 73, 636-645.	2.4	7
124	Comparative Analysis of Root Na+ Relation under Salinity between OryzaÂsativa and Oryza coarctata. Plants, 2022, 11, 656.	1.6	7
125	Exposure of colonic epithelial cells to oxidative and endoplasmic reticulum stress causes rapid potassium efflux and calcium influx. Cell Biochemistry and Function, 2013, 31, 603-611.	1.4	6
126	Redox-active Cu(II)–Aβ causes substantial changes in axonal integrity in cultured cortical neurons in an oxidative-stress dependent manner. Experimental Neurology, 2012, 237, 499-506.	2.0	6

#	Article	IF	CITATIONS
127	Effects of Potassium Availability on Growth and Development of Barley Cultivars. Agronomy, 2021, 11, 2269.	1.3	6
128	Tg2576 Cortical Neurons That Express Human Ab Are Susceptible to Extracellular Aβ-Induced, K+ Efflux Dependent Neurodegeneration. PLoS ONE, 2011, 6, e19026.	1.1	5
129	Organic vs inorganic. Communicative and Integrative Biology, 2009, 2, 74-75.	0.6	4
130	Studying Membrane Transport Processes by Non-invasive Microelectrodes: Basic Principles and Methods. , 2012, , 167-186.		4
131	Noninvasive Microelectrode Ion Flux Estimation Technique (MIFE) for the Study of the Regulation of Root Membrane Transport by Cyclic Nucleotides. Methods in Molecular Biology, 2013, 1016, 95-106.	0.4	4
132	Proto Kranz-like leaf traits and cellular ionic regulation are associated with salinity tolerance in a halophytic wild rice. Stress Biology, 2022, 2, 1.	1.5	4
133	Plant Breeding for Flood Tolerance: Advances and Limitations. , 2015, , 43-72.		2
134	Reduced apoplastic barriers in tissues of shoot-proximal rhizomes of <i>Oryza coarctata</i> are associated with Na+ sequestration. Journal of Experimental Botany, 2022, 73, 998-1015.	2.4	2
135	Membrane transport activity and ultradian ion flux oscillations associated with cell cycle of Thraustochytrium sp Functional Plant Biology, 2001, 28, 87.	1.1	2
136	Development of suberized barrier is critical for ion partitioning between senescent and non-senescent tissues in a succulent halophyte Sarcocornia quinqueflora. Environmental and Experimental Botany, 2022, 194, 104692.	2.0	2