
Philipp Lohmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4962075/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PET/MRI Radiomics in Patients With Brain Metastases. Frontiers in Neurology, 2020, 11, 1.	1.1	210
2	Combined FET PET/MRI radiomics differentiates radiation injury from recurrent brain metastasis. NeuroImage: Clinical, 2018, 20, 537-542.	1.4	113
3	Static and dynamic 18F–FET PET for the characterization of gliomas defined by IDH and 1p/19q status. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 443-451.	3.3	95
4	Dynamic <i>O</i> -(2- ¹⁸ F-fluoroethyl)-L-tyrosine positron emission tomography differentiates brain metastasis recurrence from radiation injury after radiotherapy. Neuro-Oncology, 2017, 19, now149.	0.6	91
5	Predicting IDH genotype in gliomas using FET PET radiomics. Scientific Reports, 2018, 8, 13328.	1.6	90
6	Radiomics in neuro-oncology: Basics, workflow, and applications. Methods, 2021, 188, 112-121.	1.9	85
7	Radiation injury vs. recurrent brain metastasis: combining textural feature radiomics analysis and standard parameters may increase 18F-FET PET accuracy without dynamic scans. European Radiology, 2017, 27, 2916-2927.	2.3	81
8	Current status of PET imaging in neuro-oncology. Neuro-Oncology Advances, 2019, 1, vdz010.	0.4	78
9	Dual-time-point O-(2-[18F]fluoroethyl)-L-tyrosine PET for grading of cerebral gliomas. European Radiology, 2015, 25, 3017-3024.	2.3	76
10	Imaging of amino acid transport in brain tumours: Positron emission tomography with O-(2-[18) Tj ETQq0 0 0 rg	BT /Overlc 1.9	ock 10 Tf 50
11	Applications of radiomics and machine learning for radiotherapy of malignant brain tumors. Strahlentherapie Und Onkologie, 2020, 196, 856-867.	1.0	76
12	FET PET reveals considerable spatial differences in tumour burden compared to conventional MRI in newly diagnosed glioblastoma. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 591-602.	3.3	74

13	Comparison of 18F-FET PET and perfusion-weighted MRI for glioma grading: a hybrid PET/MR study. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 2257-2265.	3.3	60
14	Bone regeneration induced by a 3D architectured hydrogel in a rat critical-size calvarial defect. Biomaterials, 2017, 113, 158-169.	5.7	58
15	FET PET Radiomics for Differentiating Pseudoprogression from Early Tumor Progression in Glioma Patients Post-Chemoradiation. Cancers, 2020, 12, 3835.	1.7	55
16	Combined Amino Acid Positron Emission Tomography and Advanced Magnetic Resonance Imaging in Glioma Patients. Cancers, 2019, 11, 153.	1.7	51
17	Radiomics in radiation oncology—basics, methods, and limitations. Strahlentherapie Und Onkologie, 2020, 196, 848-855.	1.0	48
18	Differentiation of treatment-related changes from tumour progression: a direct comparison between dynamic FET PET and ADC values obtained from DWI MRI. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 1889-1901.	3.3	47

PHILIPP LOHMANN

#	Article	IF	CITATIONS
19	Early treatment response evaluation using FET PET compared to MRI in glioblastoma patients at first progression treated with bevacizumab plus lomustine. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 2377-2386.	3.3	45
20	Sequential implementation of DSC-MR perfusion and dynamic [18F]FET PET allows efficient differentiation of glioma progression from treatment-related changes. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 1956-1965.	3.3	37
21	Comparison of O-(2-18 F-Fluoroethyl)-L-Tyrosine Positron Emission Tomography and Perfusion-Weighted Magnetic Resonance Imaging in the Diagnosis of Patients with Progressive and Recurrent Glioma: A Hybrid Positron Emission Tomography/Magnetic Resonance Study. World Neurosurgery, 2018, 113, e727-e737.	0.7	34
22	Current Landscape and Emerging Fields of PET Imaging in Patients with Brain Tumors. Molecules, 2020, 25, 1471.	1.7	33
23	Photopenic defects on O-(2-[18F]-fluoroethyl)-L-tyrosine PET: clinical relevance in glioma patients. Neuro-Oncology, 2019, 21, 1331-1338.	0.6	31
24	Current trends in the use of O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) in neurooncology. Nuclear Medicine and Biology, 2021, 92, 78-84.	0.3	30
25	Influence of Bevacizumab on Blood–Brain Barrier Permeability and <i>O</i> -(2- ¹⁸ F-Fluoroethyl)-l-Tyrosine Uptake in Rat Gliomas. Journal of Nuclear Medicine, 2017, 58, 700-705.	2.8	27
26	Spatial Relationship of Glioma Volume Derived from ¹⁸ F-FET PET and Volumetric MR Spectroscopy Imaging: A Hybrid PET/MRI Study. Journal of Nuclear Medicine, 2018, 59, 603-609.	2.8	27
27	A Preliminary Study on Machine Learning-Based Evaluation of Static and Dynamic FET-PET for the Detection of Pseudoprogression in Patients with IDH-Wildtype Glioblastoma. Cancers, 2020, 12, 3080.	1.7	25
28	Early treatment response assessment using ¹⁸ F-FET PET compared to contrast-enhanced MRI in glioma patients following adjuvant temozolomide chemotherapy. Journal of Nuclear Medicine, 2021, 62, jnumed.120.254243.	2.8	25
29	Treatment Monitoring of Immunotherapy and Targeted Therapy Using ¹⁸ F-FET PET in Patients with Melanoma and Lung Cancer Brain Metastases: Initial Experiences. Journal of Nuclear Medicine, 2021, 62, 464-470.	2.8	25
30	Influence of blood-brain barrier permeability on O-(2-18F-fluoroethyl)-L-tyrosine uptake in rat gliomas. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 408-416.	3.3	21
31	Diagnosis of Pseudoprogression Following Lomustine–Temozolomide Chemoradiation in Newly Diagnosed Glioblastoma Patients Using FET-PET. Clinical Cancer Research, 2021, 27, 3704-3713.	3.2	19
32	Evaluation of factors influencing 18F-FET uptake in the brain. NeuroImage: Clinical, 2018, 17, 491-497.	1.4	18
33	Role of the default mode resting-state network for cognitive functioning in malignant glioma patients following multimodal treatment. NeuroImage: Clinical, 2020, 27, 102287.	1.4	18
34	Hybrid MR-PET of brain tumours using amino acid PET and chemical exchange saturation transfer MRI. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 1031-1040.	3.3	17
35	Evaluation of FET PET Radiomics Feature Repeatability in Glioma Patients. Cancers, 2021, 13, 647.	1.7	17
36	O-(2-[18F]-Fluoroethyl)-L-Tyrosine (FET) in Neurooncology: A Review of Experimental Results. Current Radiopharmaceuticals, 2019, 12, 201-210.	0.3	17

PHILIPP LOHMANN

#	Article	IF	CITATIONS
37	Radiomics for the noninvasive prediction of the BRAF mutation status in patients with melanoma brain metastases. Neuro-Oncology, 2022, 24, 1331-1340.	0.6	17
38	Comparison of [18F]Fluoroethyltyrosine PET and Sodium MRI in Cerebral Gliomas: a Pilot Study. Molecular Imaging and Biology, 2020, 22, 198-207.	1.3	16
39	Prediction of survival in patients with IDH-wildtype astrocytic gliomas using dynamic O-(2-[18F]-fluoroethyl)-l-tyrosine PET. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 1486-1495.	3.3	16
40	Radiomics derived from amino-acid PET and conventional MRI in patients with high-grade gliomas. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2018, 62, 272-280.	0.4	15
41	Scatter Correction Based on GPU-Accelerated Full Monte Carlo Simulation for Brain PET/MRI. IEEE Transactions on Medical Imaging, 2020, 39, 140-151.	5.4	15
42	Use of FET PET in glioblastoma patients undergoing neurooncological treatment including tumour-treating fields: initial experience. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 1626-1635.	3.3	14
43	The Jülich Experience With Simultaneous 3T MR-BrainPET: Methods and Technology. IEEE Transactions on Radiation and Plasma Medical Sciences, 2019, 3, 352-362.	2.7	14
44	Feature-based PET/MRI radiomics in patients with brain tumors. Neuro-Oncology Advances, 2020, 2, iv15-iv21.	0.4	13
45	New measurements to compare soft tissue anchoring systems in pelvic floor surgery. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 924-933.	1.6	12
46	Introducing a Method of In Vitro Testing of Different Anchoring Systems Used for Female Incontinence and Prolapse Surgery. BioMed Research International, 2013, 2013, 1-7.	0.9	12
47	Influence of Dexamethasone on O-(2-[18F]-Fluoroethyl)-I-Tyrosine Uptake in the Human Brain and Quantification of Tumor Uptake. Molecular Imaging and Biology, 2019, 21, 168-174.	1.3	11
48	Use of advanced neuroimaging and artificial intelligence in meningiomas. Brain Pathology, 2022, 32, e13015.	2.1	11
49	Static FET PET radiomics for the differentiation of treatment-related changes from glioma progression. Journal of Neuro-Oncology, 2022, 159, 519-529.	1.4	11
50	Molecular imaging and advanced MRI findings following immunotherapy in patients with brain tumors. Expert Review of Anticancer Therapy, 2020, 20, 9-15.	1.1	10
51	Flare Phenomenon in O-(2-18F-Fluoroethyl)-l-Tyrosine PET After Resection of Cliomas. Journal of Nuclear Medicine, 2020, 61, 1294-1299.	2.8	10
52	Radiomics outperforms semantic features for prediction of response to stereotactic radiosurgery in brain metastases. Radiotherapy and Oncology, 2022, 166, 37-43.	0.3	10
53	Comment on "Hypometabolic gliomas on FET-PET—is there an inverted U-curve for survival?― Neuro-Oncology, 2019, 21, 1612-1613.	0.6	9
54	18F-FET-PET-guided gross total resection improves overall survival in patients with WHO grade III/IV glioma: moving towards a multimodal imaging-guided resection. Journal of Neuro-Oncology, 2021, 155, 71-80.	1.4	9

PHILIPP LOHMANN

#	Article	IF	CITATIONS
55	Prognostic value of pre-irradiation FET PET in patients with not completely resectable IDH-wildtype glioma and minimal or absent contrast enhancement. Scientific Reports, 2021, 11, 20828.	1.6	9
56	Advantages and limitations of amino acid PET for tracking therapy response in glioma patients. Expert Review of Neurotherapeutics, 2020, 20, 137-146.	1.4	8
57	Lesion-Function Analysis from Multimodal Imaging and Normative Brain Atlases for Prediction of Cognitive Deficits in Glioma Patients. Cancers, 2021, 13, 2373.	1.7	8
58	Two Decades of Brain Tumour Imaging with O-(2-[18F]fluoroethyl)-L-tyrosine PET: The Forschungszentrum Jülich Experience. Cancers, 2022, 14, 3336.	1.7	8
59	Functional magnetic resonance imaging in glioma patients: from clinical applications to future perspectives. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2018, 62, 295-302.	0.4	7
60	Treatment-Related Uptake of <i>O</i> -(2- ¹⁸ F-Fluoroethyl)-l-Tyrosine and l-[Methyl- ³ H]-Methionine After Tumor Resection in Rat Glioma Models. Journal of Nuclear Medicine, 2019, 60, 1373-1379.	2.8	7
61	Artificial Intelligence, Radiomics, and Deep Learning in Neuro-Oncology. Neuro-Oncology Advances, 2020, 2, iv1-iv2.	0.4	7
62	Investigation of cis-4-[18F]Fluoro-D-Proline Uptake in Human Brain Tumors After Multimodal Treatment. Molecular Imaging and Biology, 2018, 20, 1035-1043.	1.3	6
63	A Novel Anti-Inflammatory d-Peptide Inhibits Disease Phenotype Progression in an ALS Mouse Model. Molecules, 2021, 26, 1590.	1.7	6
64	Comparison of the Amyloid Load in the Brains of Two Transgenic Alzheimer's Disease Mouse Models Quantified by Florbetaben Positron Emission Tomography. Frontiers in Neuroscience, 2021, 15, 699926.	1.4	5
65	High-resolution, quantitative 3D PET image reconstruction for the Siemens hybrid 3T MR/BrainPET scanner using the PET reconstruction software toolkit (PRESTO). EJNMMI Physics, 2014, 1, A51.	1.3	4
66	Combined 18F-FET PET and diffusion kurtosis MRI in posttreatment glioblastoma: differentiation of true progression from treatment-related changes. Neuro-Oncology Advances, 2021, 3, vdab044.	0.4	4
67	Quantitative PET imaging with the 3T MR-BrainPET. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 702, 26-28.	0.7	3
68	NIMG-32. DIFFERENTIATION OF PSEUDOPROGRESSION FROM TUMOR PROGRESSION IN GLIOBLASTOMA PATIENTS BASED ON FET PET RADIOMICS. Neuro-Oncology, 2017, 19, vi148-vi149.	0.6	3
69	Correlation of Dynamic O-(2-[18F]Fluoroethyl)-L-Tyrosine Positron Emission Tomography, Conventional Magnetic Resonance Imaging, and Whole-Brain Histopathology in a Pretreated Glioblastoma: A Postmortem Study. World Neurosurgery, 2018, 119, e653-e660.	0.7	3
70	Treatment monitoring of immunotherapy and targeted therapy using FET PET in patients with melanoma and lung cancer brain metastases: Initial experiences Journal of Clinical Oncology, 2019, 37, e13525-e13525.	0.8	3
71	Case Report: Disruption of Resting-State Networks and Cognitive Deficits After Whole Brain Irradiation for Singular Brain Metastasis. Frontiers in Neuroscience, 2021, 15, 738708.	1.4	3
72	NIMG-79. EARLY TREATMENT RESPONSE ASSESSMENT USING O-(2-18F-FLUOROETHYL)-L-TYROSINE (FET) PET COMPARED TO MRI IN MALIGNANT GLIOMAS TREATED WITH ADJUVANT TEMOZOLOMIDE CHEMOTHERAPY. Neuro-Oncology, 2018, 20, vi193-vi193.	0.6	2

Philipp Lohmann

#	Article	IF	CITATIONS
73	A Linearized Fit Model for Robust Shape Parameterization of FET-PET TACs. IEEE Transactions on Medical Imaging, 2021, 40, 1-1.	5.4	2
74	FET and FDOPA PET Imaging in Glioma. , 2020, , 211-221.		2
75	NIMG-82. PREDICTING ISOCITRATE DEHYDROGENASE GENOTYPE IN GLIOMAS USING FET PET RADIOMICS. Neuro-Oncology, 2017, 19, vi160-vi160.	0.6	1
76	NIMG-05. THE T2-FLAIR MISMATCH SIGN IN IDH-MUTANT ASTROCYTOMAS - IS THERE AN ASSOCIATION WITH FET PET UPTAKE?. Neuro-Oncology, 2019, 21, vi162-vi162.	0.6	1
77	32. TREATMENT MONITORING OF IMMUNOTHERAPY AND TARGETED THERAPY USING AMINO ACID PET IN PATIENTS WITH BRAIN METASTASES. Neuro-Oncology Advances, 2020, 2, ii5-ii6.	0.4	1
78	Reply: Flare Phenomenon in <i>O</i> -(2-[¹⁸ F]-Fluoroethyl)-L-Tyrosine PET After Resection of Gliomas. Journal of Nuclear Medicine, 2020, 61, 1852-1852.	2.8	1
79	The role of 11C-methionine PET in patients with newly diagnosed WHO grade 2 or 3 gliomas. Neuro-Oncology, 2022, , .	0.6	1
80	Adapting MR-BrainPET scans for comparison with conventional PET: experiences with dynamic FET-PET in brain tumours. EJNMMI Physics, 2014, 1, A64.	1.3	0
81	NIMG-17. DISCRIMINATION BETWEEN RADIATION INJURY AND BRAIN METASTASIS RECURRENCE BASED ON TEXTURAL FEATURE ANALYSIS OF FET PET â€" SUPERIOR TO STANDARD METHODS?. Neuro-Oncology, 2016, 18, vi127-vi127.	0.6	0
82	NIMG-78. FIRST TIME CORRELATION OF FET PET, MRI AND POST-MORTEM WHOLE-BRAIN HISTOPATHOLOGY IN AÂPROGRESSIVE GLIOBLASTOMA. Neuro-Oncology, 2017, 19, vi160-vi160.	0.6	0
83	MLTI-17. DIFFERENTIATION OF RADIATION INJURY FROM RECURRENT BRAIN METASTASIS USING COMBINED FET PET/MRI RADIOMICS. Neuro-Oncology Advances, 2019, 1, i17-i18.	0.4	0
84	OTHR-14. TREATMENT MONITORING OF IMMUNOTHERAPY AND TARGETED THERAPY USING FET PET IN PATIENTS WITH MELANOMA AND LUNG CANCER BRAIN METASTASES: INITIAL EXPERIENCES. Neuro-Oncology Advances, 2019, 1, i21-i21.	0.4	0
85	Combined FET PET/ADC mapping: improved imaging of glioma infiltration?. Neuro-Oncology, 2020, 22, 313-314.	0.6	0
86	NIMG-38. NON-INVASIVE PREDICTION OF MGMT PROMOTER METHYLATION USING COMBINED FET PET/MRI RADIOMICS. Neuro-Oncology, 2020, 22, ii156-ii156.	0.6	0
87	Imaging challenges following newer treatment options: are companion diagnostics required in neurooncology?. Expert Review of Molecular Diagnostics, 2020, 20, 651-652.	1.5	0
88	Imaging of Response to Radiosurgery and Immunotherapy in Brain Metastases: Quo Vadis?. Current Treatment Options in Neurology, 2021, 23, 1.	0.7	0
89	NIMG-27. REGORAFENIB RESPONSE ASSESSMENT USING FET PET IN PATIENTS WITH PROGRESSIVE GLIOMA. Neuro-Oncology, 2021, 23, vi134-vi134.	0.6	0
90	NIMG-26. DIAGNOSIS OF PSEUDOPROGRESSION FOLLOWING RADIOTHERAPY PLUS LOMUSTINE-TEMOZOLOMIDE CHEMOTHERAPY IN NEWLY DIAGNOSED GLIOBLASTOMA PATIENTS USING FET PET. Neuro-Oncology, 2020, 22, ii152-ii153.	0.6	0

#	ARTICLE	IF	CITATIONS
91	NIMG-14. MACHINE LEARNING-BASED EVALUATION OF STATIC AND DYNAMIC FET-PET FOR THE DETECTION OF PSEUDOPROGRESSION IN PATIENTS WITH IDH-WILDTYPE GLIOBLASTOMA. Neuro-Oncology, 2020, 22, ii149-ii150.	0.6	0
92	NIMG-43. IMAGING FINDINGS FOLLOWING REGORAFENIB IN PATIENTS WITH MALIGNANT GLIOMA: FET PET ADDS VALUABLE INFORMATION TO ANATOMICAL MRI. Neuro-Oncology, 2020, 22, ii157-ii157.	0.6	0