
Pengfei Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4962043/publications.pdf Version: 2024-02-01

DENCEEL

#	Article	IF	CITATIONS
1	Experimental investigation on co-firing residual char and pulverized coal under MILD combustion using low-temperature preheating air. Energy, 2022, 244, 122574.	4.5	12
2	NO mechanisms of syngas MILD combustion diluted with N2, CO2, and H2O. International Journal of Hydrogen Energy, 2022, 47, 16649-16664.	3.8	18
3	MILD combustion of co-firing biomass and pulverized coal fuel blend for heterogeneous fuel NO and PM2.5 emission reduction. Fuel Processing Technology, 2022, 230, 107222.	3.7	13
4	Comparative Study between Flameless Combustion and Swirl Flame Combustion Using Low Preheating Temperature Air for Homogeneous Fuel NO Reduction. Energy & Fuels, 2021, 35, 8181-8193.	2.5	22
5	Review on MILD Combustion of Gaseous Fuel: Its Definition, Ignition, Evolution, and Emissions. Energy & Fuels, 2021, 35, 7572-7607.	2.5	45
6	A novel method to improve stability of MILD combustion in a highly heat-extracted furnace. Fuel, 2021, 292, 120315.	3.4	15
7	Experimental and Kinetic Study on the Oxidation of Syngas-Ammonia under Both N ₂ and CO ₂ Atmospheres in a Jet-Stirred Reactor. Energy & Fuels, 2021, 35, 11445-11456.	2.5	14
8	Experimental and kinetic study of NO-reburning by syngas under high CO2 concentration in a jet stirred reactor. Fuel, 2021, 304, 121403.	3.4	10
9	A new skeletal mechanism for simulating MILD combustion optimized using Artificial Neural Network. Energy, 2021, 237, 121603.	4.5	9
10	Evaluation, development, and application of a new skeletal mechanism for fuel-NO formation under air and oxy-fuel combustion. Fuel Processing Technology, 2020, 199, 106256.	3.7	34
11	Dynamic Modeling on the Mode Switching Strategy of a 35 MW _{th} Oxy-fuel Combustion Pilot Plant. Energy & Fuels, 2020, 34, 2260-2271.	2.5	6
12	Effects of gas and particle radiation on IFRF 2.5ÂMW swirling flame under oxy-fuel combustion. Fuel, 2020, 263, 116634.	3.4	18
13	Experiments and kinetic modeling of NO reburning by CH4 under high CO2 concentration in a jet-stirred reactor. Fuel, 2020, 270, 117476.	3.4	18
14	Effects of total pressure and CO2 partial pressure on the physicochemical properties and reactivity of pressurized coal char produced at rapid heating rate. Energy, 2020, 208, 118297.	4.5	27
15	Optimization of the Global Reaction Mechanism for MILD Combustion of Methane Using Artificial Neural Network. Energy & Fuels, 2020, 34, 3805-3815.	2.5	20
16	Re-Recognition of the MILD Combustion Regime by Initial Conditions of <i>T</i> _{in} and <i>X</i> _{O2} for Methane in a Nonadiabatic Well-Stirred Reactor. Energy & Fuels, 2020, 34, 2391-2404.	2.5	26
17	Comparative analysis of prediction models for methane potential based on spent edible fungus substrate. Bioresource Technology, 2020, 317, 124052.	4.8	27
18	A full spectrum k-distribution based non-gray radiative property model for unburnt char. Proceedings of the Combustion Institute, 2019, 37, 3081-3089.	2.4	21

Pengfei Li

#	Article	IF	CITATIONS
19	Experimental and Numerical Study of the Fuel-NO _{<i>x</i>} Formation at High CO ₂ Concentrations in a Jet-Stirred Reactor. Energy & Fuels, 2019, 33, 6797-6808.	2.5	11
20	Reaction Characteristics and MILD Combustion of Residual Char in a Pilot-Scale Furnace. Energy & Fuels, 2019, 33, 12791-12800.	2.5	16
21	Effects of Pressure on the Characteristics of Bituminous Coal Pyrolysis Char Formed in a Pressurized Drop Tube Furnace. Energy & Fuels, 2019, 33, 12219-12226.	2.5	27
22	Detailed investigation of NO mechanism in non-premixed oxy-fuel jet flames with CH4/H2 fuelÂblends. International Journal of Hydrogen Energy, 2018, 43, 8534-8557.	3.8	19
23	Global reaction mechanisms for MILD oxy-combustion of methane. Energy, 2018, 147, 839-857.	4.5	46
24	Optimal Equivalence Ratio to Minimize NO Emission during Moderate or Intense Low-Oxygen Dilution Combustion. Energy & Fuels, 2018, 32, 4478-4492.	2.5	24
25	A full spectrum k-distribution based non-gray radiative property model for fly ash particles. International Journal of Heat and Mass Transfer, 2018, 118, 103-115.	2.5	35
26	A compatible configuration strategy for burner streams in a 200†MWe tangentially fired oxy-fuel combustion boiler. Applied Energy, 2018, 220, 59-69.	5.1	23
27	New Dependence of NO Emissions on the Equivalence Ratio in Moderate or Intense Low-Oxygen Dilution Combustion. Energy & Fuels, 2018, 32, 12905-12918.	2.5	26
28	Evaluation, development, and validation of a new reduced mechanism for methane oxy-fuel combustion. International Journal of Greenhouse Gas Control, 2018, 78, 327-340.	2.3	35
29	Oxy-Fuel Combustion Characteristics of Pulverized Coal in a 3 MW Pilot-Scale Furnace. Energy & Fuels, 2018, 32, 10522-10529.	2.5	22
30	Nitric oxide of MILD combustion of a methane jet flame in hot oxidizer coflow: Its formations and emissions under H2O, CO2 and N2 dilutions. Fuel, 2018, 234, 567-580.	3.4	49
31	Emissions of NO and CO from counterflow combustion of CH4 under MILD and oxyfuel conditions. Energy, 2017, 124, 652-664.	4.5	76
32	Experimental and numerical investigations on oxy-coal combustion in a 35 MW large pilot boiler. Fuel, 2017, 187, 315-327.	3.4	84
33	Moderate or Intense Low-Oxygen Dilution Combustion of Methane Diluted by CO ₂ and N ₂ . Energy & Fuels, 2015, 29, 4576-4585.	2.5	69
34	Influences of Reactant Injection Velocities on Moderate or Intense Low-Oxygen Dilution Coal Combustion. Energy & Fuels, 2014, 28, 369-384.	2.5	52
35	Combustion of CH4/O2/N2 in a well stirred reactor. Energy, 2014, 72, 242-253.	4.5	54
36	MILD oxy-combustion of gaseous fuels in a laboratory-scale furnace. Combustion and Flame, 2013, 160, 933-946.	2.8	193

Pengfei Li

#	Article	IF	CITATIONS
37	Large Eddy Simulation of an Initially-Confined Triangular Oscillating Jet. Flow, Turbulence and Combustion, 2012, 88, 367-386.	1.4	10
38	Premixed Moderate or Intense Low-Oxygen Dilution (MILD) Combustion from a Single Jet Burner in a Laboratory-Scale Furnace. Energy & Fuels, 2011, 25, 2782-2793.	2.5	47
39	Impact of injection conditions on flame characteristics from a parallel multi-jet burner. Energy, 2011, 36, 6583-6595.	4.5	57
40	Influence of Inlet Dilution of Reactants on Premixed Combustion in a Recuperative Furnace. Flow, Turbulence and Combustion, 2011, 87, 617-638.	1.4	21
41	Progress and recent trend in MILD combustion. Science China Technological Sciences, 2011, 54, 255-269.	2.0	133
42	Numerical Simulation of Flameless Premixed Combustion with an Annular Nozzle in a Recuperative Furnace. Chinese Journal of Chemical Engineering, 2010, 18, 10-17.	1.7	38
43	Importance of Initial Momentum Rate and Air-Fuel Premixing on Moderate or Intense Low Oxygen Dilution (MILD) Combustion in a Recuperative Furnace. Energy & Fuels, 2009, 23, 5349-5356.	2.5	123
44	NO Reburning by CH4-H2 Mixture under High CO2 Concentration in a Jet-Stirred Reactor. IOP Conference Series: Earth and Environmental Science, 0, 621, 012044.	0.2	0