
Richard O'Connell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4961412/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nature Genetics, 2012, 44, 1060-1065.	21.4	840
2	Genome Expansion and Gene Loss in Powdery Mildew Fungi Reveal Tradeoffs in Extreme Parasitism. Science, 2010, 330, 1543-1546.	12.6	725
3	Root Endophyte Colletotrichum tofieldiae Confers Plant Fitness Benefits that Are Phosphate Status Dependent. Cell, 2016, 165, 464-474.	28.9	510
4	Colletotrichum: A Model Genus for Studies on Pathology and Fungal–Plant Interactions. Fungal Genetics and Biology, 1999, 27, 186-198.	2.1	362
5	Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of <i>Colletotrichum</i> fungi. New Phytologist, 2013, 197, 1236-1249.	7.3	332
6	Sequential Delivery of Host-Induced Virulence Effectors by Appressoria and Intracellular Hyphae of the Phytopathogen Colletotrichum higginsianum. PLoS Pathogens, 2012, 8, e1002643.	4.7	331
7	Tête à tête inside a plant cell: establishing compatibility between plants and biotrophic fungi and oomycetes. New Phytologist, 2006, 171, 699-718.	7.3	265
8	Extracellular transport and integration of plant secretory proteins into pathogenâ€induced cell wall compartments. Plant Journal, 2009, 57, 986-999.	5.7	238
9	Biogenesis of a specialized plant-fungal interface during host cell internalization of Golovinomyces orontii haustoria. Cellular Microbiology, 2011, 13, 210-226.	2.1	216
10	A Novel Arabidopsis-Colletotrichum Pathosystem for the Molecular Dissection of Plant-Fungal Interactions. Molecular Plant-Microbe Interactions, 2004, 17, 272-282.	2.6	214
11	Nonhost Resistance in Arabidopsis-Colletotrichum Interactions Acts at the Cell Periphery and Requires Actin Filament Function. Molecular Plant-Microbe Interactions, 2006, 19, 270-279.	2.6	156
12	<i>Colletotrichum higginsianum</i> extracellular LysM proteins play dual roles in appressorial function and suppression of chitinâ€triggered plant immunity. New Phytologist, 2016, 211, 1323-1337.	7.3	155
13	A locus conferring resistance to <i>Colletotrichum higginsianum</i> is shared by four geographically distinct Arabidopsis accessions. Plant Journal, 2009, 60, 602-613.	5.7	131
14	Gapless genome assembly of Colletotrichum higginsianum reveals chromosome structure and association of transposable elements with secondary metabolite gene clusters. BMC Genomics, 2017, 18, 667.	2.8	111
15	Discovery of Pathogenicity Genes in the Crucifer Anthracnose Fungus <i>Colletotrichum higginsianum</i> , Using Random Insertional Mutagenesis. Molecular Plant-Microbe Interactions, 2009, 22, 143-156.	2.6	94
16	The powdery mildew resistance protein <scp>RPW</scp> 8.2 is carried on <scp>VAMP</scp> 721/722 vesicles to the extrahaustorial membrane of haustorial complexes. Plant Journal, 2014, 79, 835-847.	5.7	77
17	Expression cloning of a fungal proline-rich glycoprotein specific to the biotrophic interface formed in the Colletotrichum-bean interaction. Plant Journal, 1998, 15, 273-279.	5.7	73
18	Nonproteinaceous effectors: the <i>terra incognita</i> of plant–fungal interactions. New Phytologist, 2019, 223, 590-596.	7.3	68

#	Article	IF	CITATIONS
19	Saccharomyces cerevisiae SSD1 orthologues are essential for host infection by the ascomycete plant pathogens Colletotrichum lagenarium and Magnaporthe grisea. Molecular Microbiology, 2007, 64, 1332-1349.	2.5	65
20	Identification of glycoproteins specific to biotrophic intracellular hyphae formed in the Colletotrichum lindemuthianumâ€bean interaction. New Phytologist, 1994, 127, 233-242.	7.3	56
21	Localization of Melanin in Conidia of Alternaria alternata Using Phage Display Antibodies. Molecular Plant-Microbe Interactions, 2002, 15, 216-224.	2.6	53
22	Colletotrichum: species, ecology and interactions. IMA Fungus, 2010, 1, 161-165.	3.8	53
23	Peroxisome Biogenesis Factor PEX13 Is Required for Appressorium-Mediated Plant Infection by the Anthracnose Fungus <i>Colletotrichum orbiculare</i> . Molecular Plant-Microbe Interactions, 2010, 23, 436-445.	2.6	53
24	Regulation and role of a STE12-like transcription factor from the plant pathogen Colletotrichum lindemuthianum. Molecular Microbiology, 2007, 64, 68-82.	2.5	47
25	The <i>Colletotrichum orbiculare ssd1</i> Mutant Enhances <i>Nicotiana benthamiana</i> Basal Resistance by Activating a Mitogen-Activated Protein Kinase Pathway Â. Plant Cell, 2009, 21, 2517-2526.	6.6	47
26	Flow cytometric purification of <i>Colletotrichum higginsianum</i> biotrophic hyphae from Arabidopsis leaves for stageâ€specific transcriptome analysis. Plant Journal, 2009, 59, 672-683.	5.7	45
27	Reprogramming of plant cells by filamentous plantâ€colonizing microbes. New Phytologist, 2014, 204, 803-814.	7.3	45
28	Immunomagnetic isolation of viable intracellular hyphae of Colletotrichum lindemuthianum (Sacc. &) Tj ETQqC 127, 223-332.	0 0 rgBT /C 7.3	Overlock 10 Tf 42
29	Subcellular Localization Screening of Colletotrichum higginsianum Effector Candidates Identifies Fungal Proteins Targeted to Plant Peroxisomes, Golgi Bodies, and Microtubules. Frontiers in Plant Science, 2018, 9, 562.	3.6	41
30	Production of a cell wall-associated endopolygalacturonase by Colletotrichum lindemuthianum and pectin degradation during bean infection. Fungal Genetics and Biology, 2004, 41, 140-147.	2.1	37
31	Production of extracellular matrices during development of infection structures by the downy mildewPeronospora parasitica. New Phytologist, 2001, 149, 83-93.	7.3	32
32	Sensitive staining of fungal extracellular matrices using colloidal gold. Mycological Research, 1995, 99, 567-573.	2.5	29
33	H3K4 trimethylation by CclA regulates pathogenicity and the production of three families of terpenoid secondary metabolites in <i>Colletotrichum higginsianum</i> . Molecular Plant Pathology, 2019, 20, 831-842.	4.2	28
34	Analysis of differentiation and development of the specialized infection structures formed by biotrophic fungal plant pathogens using monoclonal antibodies. Canadian Journal of Botany, 1995, 73, 408-417.	1.1	27
35	The distribution and expression of a biotrophy-related gene, CIH1 , within the genus Colletotrichum. Molecular Plant Pathology, 2000, 1, 213-221.	4.2	23
36	The spore coat of the bean anthracnose fungus Colletotrichum lindemuthianum is required for adhesion, appressorium development and pathogenicity. Physiological and Molecular Plant Pathology, 2007, 70, 110-119.	2.5	20

RICHARD O'CONNELL

#	Article	IF	CITATIONS
37	Identification and localisation of glycoproteins in the extracellular matrices around germ-tubes and appressoria of Colletotrichum species. Mycological Research, 2002, 106, 729-736.	2.5	19
38	Broadâ€specificity GH131 βâ€glucanases are a hallmark of fungi and oomycetes that colonize plants. Environmental Microbiology, 2019, 21, 2724-2739.	3.8	18
39	Deleting a Chromatin Remodeling Gene Increases the Diversity of Secondary Metabolites Produced by <i>Colletotrichum higginsianum</i> . Journal of Natural Products, 2019, 82, 813-822.	3.0	17
40	Inhibition of jasmonate-mediated plant defences by the fungal metabolite higginsianin B. Journal of Experimental Botany, 2020, 71, 2910-2921.	4.8	17
41	<i>Colletotrichum orbiculare FAM1</i> Encodes a Novel Woronin Body-Associated Pex22 Peroxin Required for Appressorium-Mediated Plant Infection. MBio, 2015, 6, e01305-15.	4.1	15
42	A bean epicuticular glycoprotein is present in the extracellular matrices around infection structures of the anthracnose fungus, Colletotrichum lindemuthianum. New Phytologist, 1996, 134, 579-585.	7.3	11
43	The development of extracellular vesicle markers for the fungal phytopathogen <i>Colletotrichum higginsianum</i> . Journal of Extracellular Vesicles, 2022, 11, e12216.	12.2	8
44	Immunomagnetic Purification of Colletotrichum lindemuthianum Appressoria. Applied and Environmental Microbiology, 2000, 66, 3464-3467.	3.1	6