Harminder Pal Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4961118/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Eucalyptus essential oil as a natural pesticide. Forest Ecology and Management, 2008, 256, 2166-2174.	1.4	592
2	Chromium toxicity and tolerance in plants. Environmental Chemistry Letters, 2013, 11, 229-254.	8.3	461
3	Arsenic-induced root growth inhibition in mung bean (Phaseolus aureus Roxb.) is due to oxidative stress resulting from enhanced lipid peroxidation. Plant Growth Regulation, 2007, 53, 65-73.	1.8	274
4	Â-Pinene Inhibits Growth and Induces Oxidative Stress in Roots. Annals of Botany, 2006, 98, 1261-1269.	1.4	241
5	Nitric oxide (as sodium nitroprusside) supplementation ameliorates Cd toxicity in hydroponically grown wheat roots. Environmental and Experimental Botany, 2008, 63, 158-167.	2.0	225
6	Nitric oxide alleviates arsenic toxicity by reducing oxidative damage in the roots of Oryza sativa (rice). Nitric Oxide - Biology and Chemistry, 2009, 20, 289-297.	1.2	214
7	Essential Oil of Artemisia scoparia Inhibits Plant Growth by Generating Reactive Oxygen Species and Causing Oxidative Damage. Journal of Chemical Ecology, 2009, 35, 154-162.	0.9	125
8	Phytotoxic effects of volatile oil from Artemisia scoparia against weeds and its possible use as a bioherbicide. Industrial Crops and Products, 2010, 32, 54-61.	2.5	116
9	Herbicidal activity of volatile oils from Eucalyptus citriodora against Parthenium hysterophorus. Annals of Applied Biology, 2005, 146, 89-94.	1.3	115
10	Caffeic acid affects early growth, and morphogenetic response of hypocotyl cuttings of mung bean (Phaseolus aureus). Journal of Plant Physiology, 2008, 165, 297-305.	1.6	108
11	Effect of lead on oxidative status, antioxidative response and metal accumulation in Coronopus didymus. Plant Physiology and Biochemistry, 2016, 105, 290-296.	2.8	106
12	Comparative phytotoxicity of four monoterpenes against Cassia occidentalis. Annals of Applied Biology, 2002, 141, 111-116.	1.3	102
13	Phenolic allelochemicals released by Chenopodium murale affect the growth, nodulation and macromolecule content in chickpea and pea. Plant Growth Regulation, 2007, 51, 119-128.	1.8	102
14	Antifungal activity of the volatile oil of Eucalyptus citriodora. Fìtoterapìâ, 2002, 73, 261-262.	1.1	83
15	Phytotoxic effects of Parthenium hysterophorus residues on three Brassica species. Weed Biology and Management, 2005, 5, 105-109.	0.6	81
16	Assessment of inÂvitro antioxidant activity of essential oil of Eucalyptus citriodora (lemon-scented) Tj ETQq0 0 C) rgBT /Ove	erlock 10 Tf 5
17	Phytotoxicity and cytotoxicity of Citrus aurantiifolia essential oil and its major constituents: Limonene and citral. Industrial Crops and Products, 2017, 108, 708-715.	2.5	78

18Exogenous Nitric Oxide (NO) Interferes with Lead (Pb)-Induced Toxicity by Detoxifying Reactive Oxygen
Species in Hydroponically Grown Wheat (Triticum aestivum) Roots. PLoS ONE, 2015, 10, e0138713.1.177

#	Article	IF	CITATIONS
19	Impact of Invasive Plants on the Structure and Composition of Natural Vegetation of Northwestern Indian Himalayas ¹ . Weed Technology, 2004, 18, 1296-1300.	0.4	74
20	Chemical composition and antioxidant activity of essential oil from residues of Artemisia scoparia. Food Chemistry, 2009, 114, 642-645.	4.2	70
21	Lead (Pb)-induced biochemical and ultrastructural changes in wheat (Triticum aestivum) roots. Protoplasma, 2013, 250, 53-62.	1.0	70
22	Chemical Composition and Phytotoxicity of Volatile Essential Oil from Intact and Fallen Leaves of Eucalyptus citriodora. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2006, 61, 465-471.	0.6	69
23	Essential oils as anticancer agents: Potential role in malignancies, drug delivery mechanisms, and immune system enhancement. Biomedicine and Pharmacotherapy, 2022, 146, 112514.	2.5	69
24	Allelopathic effect of two volatile monoterpenes against bill goat weed (Ageratum conyzoides L.). Crop Protection, 2002, 21, 347-350.	1.0	68
25	Mobile phone radiation inhibits Vigna radiata (mung bean) root growth by inducing oxidative stress. Science of the Total Environment, 2009, 407, 5543-5547.	3.9	63
26	Potential utilization of dried powder of Tagetes minuta as a natural herbicide for managing rice weeds. Crop Protection, 2007, 26, 566-571.	1.0	59
27	Alternative control of littleseed canary grass using eucalypt oil. Agronomy for Sustainable Development, 2007, 27, 171-177.	2.2	57
28	Phytotoxic effect of Parthenium residues on the selected soil properties and growth of chickpea and radish. Weed Biology and Management, 2002, 2, 73-78.	0.6	56
29	Ethylenediamine disuccinic acid enhanced phytoextraction of nickel from contaminated soils using Coronopus didymus (L.) Sm Chemosphere, 2018, 205, 234-243.	4.2	56
30	Characterization and Antioxidant Activity of Essential Oils from Fresh and Decaying Leaves of <i>Eucalyptus tereticornis</i> . Journal of Agricultural and Food Chemistry, 2009, 57, 6962-6966.	2.4	54
31	β-Pinene inhibited germination and early growth involves membrane peroxidation. Protoplasma, 2013, 250, 691-700.	1.0	53
32	Phytotoxicity of the Volatile Monoterpene Citronellal against Some Weeds. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2006, 61, 334-340.	0.6	51
33	Ferulic acid impairs rhizogenesis and root growth, and alters associated biochemical changes in mung bean (<i>Vigna radiata</i>) hypocotyls. Journal of Plant Interactions, 2014, 9, 267-274.	1.0	47
34	Insights into the tolerance and phytoremediation potential of Coronopus didymus L. (Sm) grown under zinc stress. Chemosphere, 2020, 244, 125350.	4.2	47
35	Lead (Pb)-Inhibited Radicle Emergence in Brassica campestris Involves Alterations in Starch-Metabolizing Enzymes. Biological Trace Element Research, 2011, 144, 1295-1301.	1.9	46
36	Phytotoxic effects of β-pinene on early growth and associated biochemical changes in rice. Acta Physiologiae Plantarum, 2011, 33, 2369-2376.	1.0	46

#	Article	IF	CITATIONS
37	Chemical Composition and Inhibitory Activity of Essential Oil from Decaying Leaves of Eucalyptus citriodora. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2006, 61, 52-56.	0.6	43
38	Arsenic (As) Inhibits Radicle Emergence and Elongation in Phaseolus aureus by Altering Starch-Metabolizing Enzymes Vis-A-Vis Disruption of Oxidative Metabolism. Biological Trace Element Research, 2012, 146, 360-368.	1.9	42
39	Eugenol-inhibited root growth in Avena fatua involves ROS-mediated oxidative damage. Pesticide Biochemistry and Physiology, 2015, 118, 64-70.	1.6	42
40	Alterations in photosynthetic pigments, protein, and carbohydrate metabolism in a wild plant Coronopus didymus L. (Brassicaceae) under lead stress. Acta Physiologiae Plantarum, 2017, 39, 1.	1.0	42
41	Phytotoxicity of a medicinal plant, Anisomeles indica, against Phalaris minor and its potential use as natural herbicide in wheat fields. Crop Protection, 2007, 26, 948-952.	1.0	40
42	Cell phone electromagnetic field radiations affect rhizogenesis through impairment of biochemical processes. Environmental Monitoring and Assessment, 2012, 184, 1813-1821.	1.3	40
43	Role of root-mediated interactions in phytotoxic interference of Ageratum conyzoides with rice (Oryza sativa). Flora: Morphology, Distribution, Functional Ecology of Plants, 2009, 204, 388-395.	0.6	39
44	Patterns of plant communities along vertical gradient in Dhauladhar Mountains in Lesser Himalayas in North-Western India. Science of the Total Environment, 2020, 716, 136919.	3.9	38
45	Caffeic acid inhibits in vitro rooting in mung bean [Vigna radiata (L.) Wilczek] hypocotyls by inducing oxidative stress. Plant Growth Regulation, 2009, 57, 21-30.	1.8	37
46	In vitro screening of essential oil from young and mature leaves of Artemisia scoparia compared to its major constituents for free radical scavenging activity. Food and Chemical Toxicology, 2010, 48, 1040-1044.	1.8	37
47	Effect of parthenina sesquiterpene lactone from Parthenium hysterophoruson early growth and physiology of Ageratum conyzoides. Journal of Chemical Ecology, 2002, 28, 2169-2179.	0.9	36
48	A time course assessment of changes in reactive oxygen species generation and antioxidant defense in hydroponically grown wheat in response to lead ions (Pb2+). Protoplasma, 2012, 249, 1091-1100.	1.0	36
49	Chemical profiling, cytotoxicity and phytotoxicity of foliar volatiles of Hyptis suaveolens. Ecotoxicology and Environmental Safety, 2019, 171, 863-870.	2.9	36
50	Biomass allocation and phenotypic plasticity are key elements of successful invasion of Parthenium hysterophorus at high elevation. Environmental and Experimental Botany, 2021, 184, 104392.	2.0	36
51	Assessment of allelopathic interference ofChenopodium albumthrough its leachates, debris extracts, rhizosphere and amended soil. Archives of Agronomy and Soil Science, 2006, 52, 705-715.	1.3	35
52	Herbicidal activity of eugenol towards some grassy and broad-leaved weeds. Journal of Pest Science, 2015, 88, 209-218.	1.9	34
53	Artemisia scoparia essential oil inhibited root growth involves reactive oxygen species (ROS)-mediated disruption of oxidative metabolism: InÂvivo ROS detection and alterations in antioxidant enzymes. Biochemical Systematics and Ecology, 2012, 44, 390-399.	0.6	33
54	Negative effect of litter of invasive weed Lantana camara on structure and composition of vegetation in the lower Siwalik Hills, northern India. Environmental Monitoring and Assessment, 2014, 186, 3379-3389.	1.3	32

#	Article	IF	CITATIONS
55	Biochemical Adaptations in Zea mays Roots to Short-Term Pb2+ Exposure: ROS Generation and Metabolism. Bulletin of Environmental Contamination and Toxicology, 2015, 95, 246-253.	1.3	32
56	Chemical characterization and allelopathic potential of volatile oil of <i>Eucalyptus tereticornis</i> against <i>Amaranthus viridis</i> . Journal of Plant Interactions, 2011, 6, 297-302.	1.0	31
57	Growth, photosynthetic activity and oxidative stress in wheat (Triticum aestivum) after exposure of lead to soil. Journal of Environmental Biology, 2012, 33, 265-9.	0.2	30
58	Appraisal of phytotoxic, cytotoxic and genotoxic potential of essential oil of a medicinal plant Vitex negundo. Industrial Crops and Products, 2020, 145, 112083.	2.5	29
59	EMF radiations (1800ÂMHz)-inhibited early seedling growth of maize (Zea mays) involves alterations in starch and sucrose metabolism. Protoplasma, 2016, 253, 1043-1049.	1.0	28
60	Cell Phone Radiations Affect Early Growth of Vigna radiata (Mung Bean) through Biochemical Alterations. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2010, 65, 66-72.	0.6	27
61	Chemical characterization and phytotoxicity of volatile essential oil from leaves of Anisomeles indica (Lamiaceae). Biochemical Systematics and Ecology, 2012, 41, 104-109.	0.6	27
62	Phenotypic variations alter the ecological impact of invasive alien species: Lessons from Parthenium hysterophorus. Journal of Environmental Management, 2019, 241, 187-197.	3.8	27
63	The impact of invasive Hyptis suaveolens on the floristic composition of the periurban ecosystems of Chandigarh, northwestern India. Flora: Morphology, Distribution, Functional Ecology of Plants, 2017, 233, 156-162.	0.6	26
64	Phytotoxicity of Major Constituents of the Volatile Oil from Leaves of Artemisia scoparia Waldst. & Kit Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2008, 63, 663-666.	0.6	24
65	Chemical characterization, phytotoxic, and cytotoxic activities of essential oil of Mentha longifolia. Environmental Science and Pollution Research, 2020, 27, 13512-13523.	2.7	23
66	Citronellol Disrupts Membrane Integrity by Inducing Free Radical Generation. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2011, 66, 260-266.	0.6	22
67	Pb-inhibited mitotic activity in onion roots involves DNA damage and disruption of oxidative metabolism. Ecotoxicology, 2014, 23, 1292-1304.	1.1	22
68	Sensitivity of plants to high frequency electromagnetic radiation: cellular mechanisms and morphological changes. Reviews in Environmental Science and Biotechnology, 2021, 20, 55-74.	3.9	22
69	Phytotoxicity of Ageratum conyzoides residues towards growth and nodulation of Cicer arietinum. Agriculture, Ecosystems and Environment, 2006, 113, 399-401.	2.5	21
70	Caffeine affects adventitious rooting and causes biochemical changes in the hypocotyl cuttings of mung bean (Phaseolus aureus Roxb.). Acta Physiologiae Plantarum, 2008, 30, 401-405.	1.0	21
71	Exposure to 2100 MHz electromagnetic field radiations induces reactive oxygen species generation in Allium cepa roots. Journal of Microscopy and Ultrastructure, 2017, 5, 225.	0.1	21
72	Allelopathy of Gymnospermous Trees. Journal of Forest Research, 1999, 4, 245-254.	0.7	20

5

#	Article	IF	CITATIONS
73	Chemical composition of essential oil from leaves of Chenopodium ambrosioides from Chandigarh, India. Chemistry of Natural Compounds, 2008, 44, 378-379.	0.2	20
74	Constituents of Leaf Essential Oil of Mentha longifolia from India. Chemistry of Natural Compounds, 2008, 44, 528-529.	0.2	20
75	Nature of interference potential of leaf debris of Ageratum conyzoides. Plant Growth Regulation, 2009, 57, 137-144.	1.8	17
76	Comparative cyto- and genotoxicity of 900†MHz and 1800†MHz electromagnetic field radiations in root meristems of Allium cepa. Ecotoxicology and Environmental Safety, 2020, 188, 109786.	2.9	17
77	Cr(VI) Imposed Toxicity in Maize Seedlings Assessed in Terms of Disruption in Carbohydrate Metabolism. Biological Trace Element Research, 2013, 156, 316-322.	1.9	16
78	Adaptations to oxidative stress in Zea mays roots under short-term Pb2+ exposure. Biologia (Poland), 2015, 70, 190-197.	0.8	16
79	Nitric oxide induced modulations in adventitious root growth, lignin content and lignin synthesizing enzymes in the hypocotyls of Vigna radiata. Plant Physiology and Biochemistry, 2019, 141, 225-230.	2.8	15
80	Appraisal of immediate and late effects of mobile phone radiations at 2100ÂMHz on mitotic activity and DNA integrity in root meristems of Allium cepa. Protoplasma, 2019, 256, 1399-1407.	1.0	14
81	Evaluation of a glycolipopepetide biosurfactant from Aeromonas hydrophila RP1 for bioremediation and enhanced oil recovery. Journal of Cleaner Production, 2022, 345, 131098.	4.6	14
82	Status of Floor Vegetation under Some Monoculture and Mixculture Plantations in North India. Journal of Forest Research, 1996, 1, 205-209.	0.7	13
83	Effect of 2-Benzoxazolinone (BOA) on Seedling Growth and Associated Biochemical Changes in Mung Bean (Phaseolus aureus). Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2006, 61, 709-714.	0.6	13
84	Exposure to mobile phone radiations at 2350ÂMHz incites cyto- and genotoxic effects in root meristems of Allium cepa. Journal of Environmental Health Science & Engineering, 2019, 17, 97-104.	1.4	13
85	Morphological, anatomical, and ultrastructural changes (visualized through scanning electron) Tj ETQq1 1 0.784	314 rgBT 1.0	/Overlock 10
86	Salicylic acid pre-treatment modulates Pb2+-induced DNA damage vis-Ã-vis oxidative stress in Allium cepa roots. Environmental Science and Pollution Research, 2021, 28, 51989-52000.	2.7	12
87	β-Pinene moderates Cr(VI) phytotoxicity by quenching reactive oxygen species and altering antioxidant machinery in maize. Environmental Science and Pollution Research, 2019, 26, 456-463.	2.7	11
88	Amelioration potential of Î ² -pinene on Cr(VI)-induced toxicity on morphology, physiology and ultrastructure of maize. Environmental Science and Pollution Research, 2021, 28, 62431-62443.	2.7	11
89	Reactive oxygen species generation and antioxidant defense system in hydroponically grown wheat (Triticum aestivum) upon β-pinene exposure: an early time course assessment. Acta Physiologiae Plantarum, 2014, 36, 3137-3146.	1.0	10
90	Exotic avenue plantations turning foe: Invasive potential, distribution and impact of Broussonetia papyrifera in Chandigarh, India. Urban Forestry and Urban Greening, 2021, 59, 127010.	2.3	10

#	Article	IF	CITATIONS
91	Nature of phytotoxic interference of alien weed â€~Calyptocarpus vialis' against some crop plants. Environmental Monitoring and Assessment, 2021, 193, 334.	1.3	10
92	Role of Monoterpenes in Eucalyptus Communities. Current Bioactive Compounds, 2012, 8, 101-107.	0.2	9
93	24-Epibrassinolide pre-treatment reduces alkaline-induced oxidative stress in red rice seedlings. Environmental Science and Pollution Research, 2019, 26, 23192-23197.	2.7	9
94	Pogostemon benghalensis essential oil inhibited the weed growth via causing oxidative damage. Revista Brasileira De Botanica, 2020, 43, 447-457.	0.5	9
95	I-DOPA (I-3,4-dihydroxyphenylalanine) affects rooting potential and associated biochemical changes in hypocotyl of mung bean, and inhibits mitotic activity in onion root tips. Plant Growth Regulation, 2006, 49, 229-235.	1.8	8
96	Chemical Characterization and Phytotoxicity of Foliar Volatiles and Essential Oil of <i>Callistemon viminalis</i> . Journal of Essential Oil-bearing Plants: JEOP, 2017, 20, 535-545.	0.7	8
97	Evaluating the role of phenology in managing urban invasions: A case study of Broussonetia papyrifera. Urban Forestry and Urban Greening, 2020, 48, 126583.	2.3	8
98	Phytotoxicity and weed management potential of leaf extracts of Callistemon viminalis against the weeds of rice. Acta Physiologiae Plantarum, 2017, 39, 1.	1.0	7
99	β-Pinene alleviates arsenic (As)-induced oxidative stress by modulating enzymatic antioxidant activities in roots of Oryza sativa. Ecotoxicology and Environmental Safety, 2022, 229, 113080.	2.9	7
100	β-Pinene partially ameliorates Cr(VI)-inhibited growth and biochemical changes in emerging seedlings. Plant Growth Regulation, 2016, 79, 243-249.	1.8	6
101	Variations in leaf litter decomposition explain invasion success of Broussonetia papyrifera over confamilial non-invasive Morus alba in urban habitats. Urban Forestry and Urban Greening, 2022, 67, 127408.	2.3	6
102	Phytotoxicity of decomposing below-ground residues of Ageratum conyzoides: nature and dynamics of release of phytotoxins. Acta Physiologiae Plantarum, 2012, 34, 1075-1081.	1.0	5
103	Isolation and characterization of a novel hydrocarbonoclastic and biosurfactant producing bacterial strain: Fictibacillus phosphorivorans RP3. 3 Biotech, 2021, 11, 105.	1.1	5
104	Parthenin—A Sesquiterpene Lactone with Multifaceted Biological Activities: Insights and Prospects. Molecules, 2021, 26, 5347.	1.7	5
105	Bridging the gap: linking morpho-functional traits' plasticity with hyperaccumulation. Environmental Monitoring and Assessment, 2021, 193, 762.	1.3	5
106	Investigating the phytotoxic potential of Verbesina encelioides: effect on growth and performance of co-occurring weed species. Protoplasma, 2023, 260, 77-87.	1.0	5
107	Ni+2-inhibited radicle growth in germinating wheat seeds involves alterations in sugar metabolism. Acta Physiologiae Plantarum, 2014, 36, 923-929.	1.0	4
108	Chromium phytoextraction from tannery effluent-contaminated soil by Crotalaria juncea infested with Pseudomonas fluorescens. Environmental Science and Pollution Research, 2014, 21, 7938-7944.	2.7	4

#	Article	IF	CITATIONS
109	Allelopathic Effect of Leaves of Invasive tree Broussonetia papyrifera against some crop plants. Annals of Plant Sciences, 2016, 5, 1261.	0.2	4
110	Biodegradable chelant-metal complexes enhance cadmium phytoextraction efficiency of Solanum americanum. Environmental Science and Pollution Research, 2022, 29, 57102-57111.	2.7	4
111	Alterations in phytotoxicity and allelochemistry in response to intraspecific variation in Parthenium hysterophorus. Ecological Complexity, 2022, 50, 100999.	1.4	4
112	Phytotoxicity of essential oil of Pogostemon benghalensis and its potential use as bioherbicide. Vegetos, 2021, 34, 807-813.	0.8	3
113	Cytotoxic and genotoxic assessment of agricultural soils from an industrial region. Environmental Monitoring and Assessment, 2021, 193, 526.	1.3	2
114	Parthenium hysterophorus. , 2021, , 311-333.		1
115	Back after 40 years: a rare sighting of Eurasian Siskin Spinus spinus (Linnaeus, 1758) (Aves:) Tj ETQq1 1 0.78431 20935-20938.	14 rgBT /O 0.1	overlock 10 Tf O