
Fabrizio Mattei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4960994/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cancer Immunology: From Molecular Mechanisms to Therapeutic Opportunities. Cells, 2022, 11, 459.	1.8	Ο
2	Multi-scale generative adversarial network for improved evaluation of cell–cell interactions observed in organ-on-chip experiments. Neural Computing and Applications, 2021, 33, 3671-3689.	3.2	13
3	A Clonogenic Assay to Quantify Melanoma Micrometastases in Pulmonary Tissue. Methods in Molecular Biology, 2021, 2265, 385-406.	0.4	0
4	Oncoimmunology Meets Organs-on-Chip. Frontiers in Molecular Biosciences, 2021, 8, 627454.	1.6	21
5	Microfluidic Co-Culture Models for Dissecting the Immune Response in in vitro Tumor Microenvironments. Journal of Visualized Experiments, 2021, , .	0.2	5
6	Anticancer Effects of Sublingual Type I IFN in Combination with Chemotherapy in Implantable and Spontaneous Tumor Models. Cells, 2021, 10, 845.	1.8	4
7	Acidic and Hypoxic Microenvironment in Melanoma: Impact of Tumour Exosomes on Disease Progression. Cells, 2021, 10, 3311.	1.8	12
8	High-throughput analysis of cell-cell crosstalk in ad hoc designed microfluidic chips for oncoimmunology applications. Methods in Enzymology, 2020, 632, 479-502.	0.4	7
9	Is There a Role for Basophils in Cancer?. Frontiers in Immunology, 2020, 11, 2103.	2.2	37
10	Anti-Tumorigenic Activities of IL-33: A Mechanistic Insight. Frontiers in Immunology, 2020, 11, 571593.	2.2	19
11	Eosinophils in the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1273, 1-28.	0.8	20
12	Tumor-Intrinsic or Drug-Induced Immunogenicity Dictates the Therapeutic Success of the PD1/PDL Axis Blockade. Cells, 2020, 9, 940.	1.8	8
13	Basophils in Tumor Microenvironment and Surroundings. Advances in Experimental Medicine and Biology, 2020, 1224, 21-34.	0.8	30
14	IL-33 Promotes CD11b/CD18-Mediated Adhesion of Eosinophils to Cancer Cells and Synapse-Polarized Degranulation Leading to Tumor Cell Killing. Cancers, 2019, 11, 1664.	1.7	45
15	From Petri Dishes to Organ on Chip Platform: The Increasing Importance of Machine Learning and Image Analysis. Frontiers in Pharmacology, 2019, 10, 100.	1.6	26
16	Abstract A091: IL-33 activates antitumoral toxicity in eosinophils through stimulation of contact-dependent degranulation. , 2019, , .		0
17	Eosinophils: The unsung heroes in cancer?. Oncolmmunology, 2018, 7, e1393134.	2.1	184
18	The Pleiotropic Immunomodulatory Functions of IL-33 and Its Implications in Tumor Immunity. Frontiers in Immunology, 2018, 9, 2601.	2.2	74

Fabrizio Mattei

#	Article	IF	CITATIONS
19	Acidic microenvironment plays a key role in human melanoma progression through a sustained exosome mediated transfer of clinically relevant metastatic molecules. Journal of Experimental and Clinical Cancer Research, 2018, 37, 245.	3.5	104
20	IL-33 restricts tumor growth and inhibits pulmonary metastasis in melanoma-bearing mice through eosinophils. Oncolmmunology, 2017, 6, e1317420.	2.1	137
21	Organs on chip approach: a tool to evaluate cancer -immune cells interactions. Scientific Reports, 2017, 7, 12737.	1.6	69
22	Combining Type I Interferons and 5-Aza-2′-Deoxycitidine to Improve Anti-Tumor Response against Melanoma. Journal of Investigative Dermatology, 2017, 137, 159-169.	0.3	60
23	Late Breaking Abstract - Title: Air-born allergens modulate the immunological lung microenvironment. , 2017, , .		0
24	Follow-up of IgD-κ multiple myeloma by monitoring free light chains and total heavy chain IgD: A case report. Oncology Letters, 2016, 12, 1884-1888.	0.8	1
25	Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1. Science, 2015, 350, 972-978.	6.0	367
26	Classification of current anticancer immunotherapies. Oncotarget, 2014, 5, 12472-12508.	0.8	395
27	A multidisciplinary study using <i>in vivo</i> tumor models and microfluidic cell-on-chip approach to explore the cross-talk between cancer and immune cells. Journal of Immunotoxicology, 2014, 11, 337-346.	0.9	48
28	Cancer-driven dynamics of immune cells in a microfluidic environment. Scientific Reports, 2014, 4, 6639.	1.6	68
29	Novel allergic asthma model demonstrates ST2-dependent dendritic cell targeting by cypress pollen. Journal of Allergy and Clinical Immunology, 2013, 132, 686-695.e7.	1.5	22
30	<i><scp>M</scp>ycobacterium tuberculosis</i> <scp>P</scp> st <scp>S</scp> 1 amplifies <scp>IFN</scp> â€i³ and induces <scp>IL</scp> â€i7/ <scp>IL</scp> â€i22 responses by unrelated memory <scp>CD</scp> 4 ⁺ <scp>T</scp> cells via dendritic cell activation. European Journal of Immunology, 2013, 43, 2386-2397.	1.6	21
31	Cross talk between cancer and immune cells: exploring complex dynamics in a microfluidic environment. Lab on A Chip, 2013, 13, 229-239.	3.1	126
32	TIM-3 as a molecular switch for tumor escape from innate immunity. Frontiers in Immunology, 2013, 3, 418.	2.2	7
33	The Tumor Microenvironment: A Pitch for Multiple Players. Frontiers in Oncology, 2013, 3, 90.	1.3	121
34	Type I Interferons as Stimulators of DC-Mediated Cross-Priming: Impact on Anti-Tumor Response. Frontiers in Immunology, 2013, 4, 483.	2.2	113
35	The dual role of IRF8 in cancer immunosurveillance. OncoImmunology, 2013, 2, e25476.	2.1	7
36	Interferon Regulatory Factor 8-Deficiency Determines Massive Neutrophil Recruitment but T Cell Defect in Fast Growing Granulomas during Tuberculosis. PLoS ONE, 2013, 8, e62751.	1.1	6

FABRIZIO MATTEI

#	Article	IF	CITATIONS
37	IRF-8 Controls Melanoma Progression by Regulating the Cross Talk between Cancer and Immune Cells within the Tumor Microenvironment. Neoplasia, 2012, 14, 1223-IN43.	2.3	48
38	Cyclophosphamide Synergizes with Type I Interferons through Systemic Dendritic Cell Reactivation and Induction of Immunogenic Tumor Apoptosis. Cancer Research, 2011, 71, 768-778.	0.4	304
39	Type I IFNs Control Antigen Retention and Survival of CD8α+ Dendritic Cells after Uptake of Tumor Apoptotic Cells Leading to Cross-Priming. Journal of Immunology, 2011, 186, 5142-5150.	0.4	110
40	Regulation of immune cell homeostasis by type I interferons. Cytokine and Growth Factor Reviews, 2010, 21, 227-236.	3.2	34
41	Type I IFN regulate DC turnover <i>in vivo</i> . European Journal of Immunology, 2009, 39, 1807-1818.	1.6	31
42	ICSBP/IRF-8 differentially regulates antigen uptake during dendritic-cell development and affects antigen presentation to CD4+ T cells. Blood, 2006, 108, 609-617.	0.6	25
43	STAT1 Regulates IFN-αβ- and IFN-γ-Dependent Control of Infection with <i>Chlamydia pneumoniae</i> by Nonhemopoietic Cells. Journal of Immunology, 2006, 176, 6982-6990.	0.4	41
44	ICSBP is critically involved in the normal development and trafficking of Langerhans cells and dermal dendritic cells. Blood, 2004, 103, 2221-2228.	0.6	98
45	ICSBP Is Essential for the Development of Mouse Type I Interferon-producing Cells and for the Generation and Activation of CD8α+ Dendritic Cells. Journal of Experimental Medicine, 2002, 196, 1415-1425.	4.2	389
46	Type I interferons produced by dendritic cells promote their phenotypic and functional activation. Blood, 2002, 99, 3263-3271.	0.6	446
47	IL-15 Is Expressed by Dendritic Cells in Response to Type I IFN, Double-Stranded RNA, or Lipopolysaccharide and Promotes Dendritic Cell Activation. Journal of Immunology, 2001, 167, 1179-1187.	0.4	389
48	Cyclophosphamide induces type I interferon and augments the number of CD44hi T lymphocytes in mice: implications for strategies of chemoimmunotherapy of cancer. Blood, 2000, 95, 2024-2030.	0.6	189
49	BAX Gene Expression in Melanoma Metastases. Journal of Investigative Dermatology, 1996, 106, 382.	0.3	3
50	Selection of Patients with Monoclonal Grammopathy of Undetermined Significance is Mandatory for a Reliable Use of Interleukin-6 and Other Nonspecific Multiple Myeloma Serum Markers. Acta Haematologica, 1994, 92, 1-7.	0.7	5
51	Traffic-related NO2 affects expression of Cupressus sempervirens L. pollen allergens. Annals of Agricultural and Environmental Medicine, 0, , .	0.5	2
52	Differential Effects of Alarmins on Human and Mouse Basophils. Frontiers in Immunology, 0, 13, .	2.2	10