Naznin Sultana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/496077/publications.pdf

Version: 2024-02-01

394421 434195 1,108 61 19 31 citations h-index g-index papers 63 63 63 1688 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Biowastes of slaughterhouses and wet markets: an overview of waste management for disease prevention. Environmental Science and Pollution Research, 2023, 30, 71780-71793.	5.3	15
2	Electrospun nanofiber composite membranes based on cellulose acetate/nano-zeolite for the removal of oil from oily wastewater. Emergent Materials, 2022, 5, 145-153.	5.7	8
3	A review on the contamination of SARS-CoV-2 in water bodies: Transmission route, virus recovery and recent biosensor detection techniques. Sensing and Bio-Sensing Research, 2022, 36, 100482.	4.2	7
4	Electrospun Biodegradable Bi-Layered Microfiber Membranes for Aluminum Removal from Drinking Water. Micro and Nanosystems, 2021, 13, 82-89.	0.6	2
5	Generation of HeLa spheroids in Ca-alginate-PEG microbeads using flicking technique as an improved three-dimensional cell culture system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 599, 124885.	4.7	1
6	Application of conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) polymers in potential biomedical engineering. Journal of Pharmaceutical Investigation, 2020, 50, 437-444.	5.3	28
7	Electrodeposition of Ginseng/Polyaniline Encapsulated Poly(lactic- <i>co</i> -glycolic Acid) Microcapsule Coating on Stainless Steel 316L at Different Deposition Parameters. Chemical and Pharmaceutical Bulletin, 2019, 67, 445-451.	1.3	5
8	Biomineralized Conductive PEDOT:PSS-Coated PLA/PHBV/HA Nanofibrous Membranes. ASAIO Journal, 2018, 64, 415-423.	1.6	9
9	Comparison of biophysical properties characterized for microtissues cultured using microencapsulation and liquid crystal based 3D cell culture techniques. Cytotechnology, 2018, 70, 13-29.	1.6	3
10	Mechanical and biological properties of scaffold materials. , 2018, , 1-21.		16
11	Characterization, drug loading and antibacterial activity of nanohydroxyapatite/polycaprolactone (nHA/PCL) electrospun membrane. 3 Biotech, 2017, 7, 249.	2.2	52
12	PLA/PHBV electrospun membrane: Fabrication, coating with conductive PEDOT:PSS and antibacterial activity of drug loaded membrane. Cogent Engineering, 2017, 4, 1322479.	2.2	9
13	CHARACTERIZATION OF PCL/ZEOLITE ELECTROSPUN MEMBRANE FOR THE REMOVAL OF SILVER IN DRINKING WATER. Jurnal Teknologi (Sciences and Engineering), 2017, 79, .	0.4	1
14	FABRICATION AND CHARACTERIZATION OF PCL/HA/PPY COMPOSITE SCAFFOLD USING FREEZE-DRYING TECHNIQUE. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.4	1
15	PEDOT:PSS-Containing Nanohydroxyapatite/Chitosan Conductive Bionanocomposite Scaffold: Fabrication and Evaluation. Journal of Nanomaterials, 2016, 2016, 1-12.	2.7	12
16	Cellulose acetate electrospun nanofibrous membrane: fabrication, characterization, drug loading and antibacterial properties. Bulletin of Materials Science, 2016, 39, 337-343.	1.7	25
17	In vitro cytotoxicity and antibacterial activity of silver-coated electrospun polycaprolactone/gelatine nanofibrous scaffolds. 3 Biotech, 2016, 6, 211.	2.2	30
18	Conductive PEDOT:PSS coated polylactide (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) electrospun membranes: Fabrication and characterization. Materials Science and Engineering C, 2016, 61, 396-410.	7.3	59

#	Article	IF	CITATIONS
19	<i>In Vitro</i> Biological Evaluation of Electrospun Polycaprolactone/Gelatine Nanofibrous Scaffold for Tissue Engineering. Journal of Nanomaterials, 2015, 2015, 1-10.	2.7	24
20	Effects of Chitosan Concentration on the Protein Release Behaviour of Electrospun Poly(<mml:math) 0<="" etqq0="" td="" tj=""><td>0 rgBT /O 2.7</td><td>verlock 10 Tf</td></mml:math)>	0 rgBT /O 2.7	verlock 10 Tf
	Journal of Nanomaterials, 2015, 2015, 1-11.		
21	Fabrication and Evaluation of Polycaprolactone/Gelatin-Based Electrospun Nanofibers with Antibacterial Properties. Journal of Nanomaterials, 2015, 2015, 1-8.	2.7	53
22	Porous PCL/Chitosan and nHA/PCL/Chitosan Scaffolds for Tissue Engineering Applications: Fabrication and Evaluation. Journal of Nanomaterials, 2015, 2015, 1-8.	2.7	28
23	Fabrication and Characterization of Polymer and Composite Scaffolds Using Freeze-Drying Technique. SpringerBriefs in Materials, 2015, , 45-60.	0.3	1
24	Electrospun Polycaprolactone (PCL) and PCL/ nano-hydroxyapatite (PCL/nHA)-based nanofibers for bone tissue engineering application. , 2015, , .		5
25	Chitosan-Based Nanocomposite Scaffolds for Tissue Engineering Applications. Materials and Manufacturing Processes, 2015, 30, 273-278.	4.7	40
26	Fabrication of Polymer and Composite Scaffolds Using Electrospinning Techniques. SpringerBriefs in Materials, 2015, , 25-43.	0.3	O
27	Drug loading, drug release and in vitro degradation of poly(caprolactone) electrospun fibers. , 2014, , .		2
28	Fabrication and <i>In Vitro </i> Evaluation of Nanosized Hydroxyapatite/Chitosan-Based Tissue Engineering Scaffolds. Journal of Nanomaterials, 2014, 2014, 1-8.	2.7	22
29	The Fabrication and Characterization of PCL/Rice Husk Derived Bioactive Glass-Ceramic Composite Scaffolds. Journal of Nanomaterials, 2014, 2014, 1-9.	2.7	10
30	Fabrication of Nanohydroxyapatite/Poly(caprolactone) Composite Microfibers Using Electrospinning Technique for Tissue Engineering Applications. Journal of Nanomaterials, 2014, 2014, 1-7.	2.7	33
31	Bioactivity Assessment of Poly(<i>É></i> -caprolactone)/Hydroxyapatite Electrospun Fibers for Bone Tissue Engineering Application. Journal of Nanomaterials, 2014, 2014, 1-6.	2.7	32
32	Fabrication and Characterization of Cellulose Acetate Nanofibers. Advanced Materials Research, 2014, 1030-1032, 78-81.	0.3	0
33	Fabrication of BSA Loaded Poly (Caprolactone) (PCL)/Hydroxyapatite (HA) Composite Microsphere for Tissue Engineering Application. Advanced Materials Research, 2014, 1030-1032, 82-85.	0.3	O
34	Natural-Synthetic Polymer Blend Composite Scaffold for Bone Tissue Engineering: Study of <i>In Vitro</i> Degradation and Protein Adsorption. Applied Mechanics and Materials, 2014, 554, 42-46.	0.2	2
35	Fabrication and Characterization of Polycaprolactone (PCL)/Gelatin Electrospun Fibers. Applied Mechanics and Materials, 2014, 554, 52-56.	0.2	4
36	Effects of parameters on the fabrication of poly(caprolactone) electrospun membrane using electrospinning technique. , 2014, , .		1

3

#	Article	IF	CITATIONS
37	Fabrication Techniques and Properties of Scaffolds. SpringerBriefs in Applied Sciences and Technology, 2013, , 19-42.	0.4	2
38	Biodegradable Polymer-Based Scaffolds for Bone Tissue Engineering. SpringerBriefs in Applied Sciences and Technology, 2013, , .	0.4	16
39	Effects of Chitosan Alkali Pretreatment on the Preparation of Electrospun PCL/Chitosan Blend Nanofibrous Scaffolds for Tissue Engineering Application. Journal of Nanomaterials, 2013, 2013, 1-6.	2.7	35
40	Water Absorption and Diffusion Characteristics of Nanohydroxyapatite (nHA) and Poly(hydroxybutyrate-co-hydroxyvalerate-) Based Composite Tissue Engineering Scaffolds and Nonporous Thin Films. Journal of Nanomaterials, 2013, 2013, 1-8.	2.7	44
41	Scaffolds for Tissue Engineering. SpringerBriefs in Applied Sciences and Technology, 2013, , 1-17.	0.4	3
42	Composite Scaffolds Based on Poly(caprolactone) and Chitosan for Bone Tissue Regeneration. Advanced Science Letters, 2013, 19, 162-165.	0.2	2
43	Polycaprolactone Scaffolds and Hydroxyapatite/Polycaprolactone Composite Scaffolds for Bone Tissue Engineering. Journal of Bionanoscience, 2013, 7, 169-173.	0.4	25
44	<i>In Vitro</i> Degradation of PHBV Scaffolds and nHA/PHBV Composite Scaffolds Containing Hydroxyapatite Nanoparticles for Bone Tissue Engineering. Journal of Nanomaterials, 2012, 2012, 1-12.	2.7	53
45	Factorial Study of Compressive Mechanical Properties and Primaryln VitroOsteoblast Response of PHBV/PLLA Scaffolds. Journal of Nanomaterials, 2012, 2012, 1-8.	2.7	5
46	PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and <i>in vitro</i> biological evaluation. Biofabrication, 2012, 4, 015003.	7.1	110
47	Production and characterization of tissue engineering scaffolds based on polyhydroxybutyrate-co-hydroxyvalerate polymers. , 2012, , .		0
48	Production of hydroxyapatite (HA) nanoparticle and HA/PCL tissue engineering scaffolds for bone tissue engineering. , $2012, , .$		7
49	Study of in vitro degradation of biodegradable polymer based thin films and tissue engineering scaffolds. African Journal of Biotechnology, $2011,10,10$	0.6	6
50	Fabrication of HA/PHBV composite scaffolds through the emulsion freezing/freeze-drying process and characterisation of the scaffolds. Journal of Materials Science: Materials in Medicine, 2008, 19, 2555-2561.	3.6	150
51	PHBV/PLLA-based composite scaffolds containing nano-sized hydroxyapatite particles for bone tissue engineering. Journal of Experimental Nanoscience, 2008, 3, 121-132.	2.4	42
52	<i>In Vitro</i> Degradation and Protein Adsorption Characteristics of PHBV/PLLA Blends and PHBV/PLLA-Based Tissue Engineering Scaffolds. Advanced Materials Research, 2008, 47-50, 1399-1402.	0.3	1
53	Fabrication and Characterisation of Polymer and Composite Scaffolds Based on Polyhydroxybutyrate and Polyhydroxybutyrate-Co-Hydroxyvalerate. Key Engineering Materials, 2007, 334-335, 1229-1232.	0.4	14
54	Fabrication of BSA Loaded Poly(Caprolactone) (PCL) Microsphere Incorporated Chitosan Scaffolds for Tissues Engineering Application. Applied Mechanics and Materials, 0, 695, 199-202.	0.2	0

#	Article	IF	CITATIONS
55	Evaluation of PCL/GE-Based Electrospun Nanofibers for Tissue Engineering and Drug Delivery Application. Applied Mechanics and Materials, 0, 695, 332-335.	0.2	4
56	Fabrication and Characterization of PCL/GE-Based Electrospun Nanofibers for Tissue Engineering and Drug Delivery Application. Applied Mechanics and Materials, 0, 695, 195-198.	0.2	0
57	Preparation and Characterization of Chitosan-Hydroxyapatite Nanoparticles for Gene Therapy. Advanced Materials Research, 0, 1030-1032, 2364-2367.	0.3	3
58	Polycaprolactone(PCL)/Chitosan(Cs)-Based Scaffold by Freeze Drying Technique for Tissue Engineering and Drug Delivery Application. Applied Mechanics and Materials, 0, 695, 203-206.	0.2	4
59	Fabrication of Poly Caprolactone (PCL) Based Microspheres for Drug Delivery and Tissue Engineering Application. Applied Mechanics and Materials, 0, 695, 191-194.	0.2	1
60	Polycaprolactone(PCL)/Gelati(Ge)-Based Electrospun Nanofibers for Tissue Engineering and Drug Delivery Application. Applied Mechanics and Materials, 0, 554, 57-61.	0.2	9
61	Fabrication and Characterisation of Polymer and Composite Scaffolds Based on Polyhydroxybutyrate and Polyhydroxybutyrate-Co-Hydroxyvalerate. Key Engineering Materials, 0, , 1229-1232.	0.4	1