Anna V Gulevskaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4960300/publications.pdf Version: 2024-02-01

ANNA V CHIEVSKAVA

#	Article	IF	CITATIONS
1	A new family of 1,4-diaryl-1,3-butadiynes based on the "proton spongeâ€ı synthesis, electronic and chemical properties. New Journal of Chemistry, 2022, 46, 1829-1838.	2.8	2
2	The synthesis and crystal structure of pH-sensitive fluorescent pyrene-based double aza- and diaza[4]helicenes. Organic and Biomolecular Chemistry, 2022, 20, 2704-2714.	2.8	1
3	Alkyneâ€Based Syntheses of Carbo―and Heterohelicenes. Advanced Synthesis and Catalysis, 2022, 364, 2502-2539.	4.3	9
4	Synthesis, crystal structures and properties of carbazole-based [6]helicenes fused with an azine ring. Beilstein Journal of Organic Chemistry, 2021, 17, 11-21.	2.2	8
5	Ethynylene-Bridged <i>para-ortho-para</i> -Linked Proton Sponge Trimer: Mono- and Tris(tetrafluoroborate) Protic Salts, Crystal Structures, Color Effects, and HCONMe ₂ /BF ₄ ^{â€"} Hydrogen-Bond Discrimination. Crystal Growth and Design. 2021. 21. 7247-7256.	3.0	2
6	Synthesis of 2â€Aryl―and 2,7â€Diarylâ€1,8â€bis(dimethylamino)naphthalenes. Overview of the "Buttressing effect―in 2,7â€Disubstituted Proton Sponges. ChemistrySelect, 2020, 5, 9932-9945.	⁵ 1.5	11
7	Perimidines: a unique π-amphoteric heteroaromatic system. Russian Chemical Reviews, 2020, 89, 1204-1260.	6.5	10
8	Synthesis and Characterization of Azineâ€{5]Helicene Hybrids. European Journal of Organic Chemistry, 2019, 2019, 4879-4890.	2.4	6
9	Aryleneâ€Ethynylene Oligomers Based on the Proton Sponge. European Journal of Organic Chemistry, 2019, 2019, 7128-7141.	2.4	7
10	Synthesis of 2-aryl-3-methylbenzo[g]indoles from 2-(arylethynyl)-1,8-bis(dimethylamino)naphthalenes: new examples of [1,3]-migration involving N-methyl group. Chemistry of Heterocyclic Compounds, 2018, 54, 38-42.	1.2	2
11	1,3-Dipolar cycloaddition of azomethine imines to ethynyl hetarenes: A synthetic route to 2,3-dihydropyrazolo[1,2- a]pyrazol-1(5 H)-one based heterobiaryls. Tetrahedron, 2018, 74, 1101-1109.	1.9	8
12	The Sonogashira coupling of 2- and 4-ethynyl derivatives of proton sponge with 1,8-diiodonaphthalene: Novel cascade transformations into naphtho[1,2-k]fluoranthenes and acenaphtho[1,2-b]benzo[g]indoles. Tetrahedron, 2018, 74, 165-173.	1.9	2
13	1,3-Dipolar cycloaddition reactions of azomethine ylides and alkynes. Chemistry of Heterocyclic Compounds, 2018, 54, 1084-1107.	1.2	28
14	Synthesis and Characterization of Pyridineâ€, Pyrazineâ€, and Quinoxalineâ€Derived [4]Helicenes and Sâ€Shaped Double [4]Helicenes. European Journal of Organic Chemistry, 2018, 2018, 5030-5043.	2.4	15
15	Electrophileâ€Induced Cyclization of 3â€Alkynylâ€2â€arylquinoxalines: A Method for Benzo―and Naphthophenazine Synthesis. European Journal of Organic Chemistry, 2016, 2016, 4207-4214.	2.4	21
16	1,3-Dipolar cycloaddition of azinium ylides to alkynyl hetarenes: a synthetic route to indolizine and pyrrolo[2,1-a]isoquinoline based heterobiaryls. Tetrahedron, 2016, 72, 2327-2335.	1.9	13
17	Synthesis and some properties of alkynyl derivatives of 1,3-dialkylperimidones. An example of the 1,2-palladium migrationAin the Sonogashira reaction. Tetrahedron, 2016, 72, 1547-1557.	1.9	16
18	Multiple Transformations of 2-Alkynyl-1,8-bis(dimethylamino)naphthalenes into Benzo[<i>g</i>]indoles. Pd/Cu-Dependent Switching of the Electrophilic and Nucleophilic Sites in Acetylenic Bond and a Puzzle of Porcelain Catalysis. Journal of Organic Chemistry, 2015, 80, 872-881.	3.2	13

ANNA V GULEVSKAYA

#	Article	IF	CITATIONS
19	Heterocyclization of Enediynes Promoted by Sodium Azide: A Case of Ambiguity of X-ray Data and Structure Revision. Organic Letters, 2014, 16, 1582-1585.	4.6	24
20	Base-promoted cyclization of 3-alkynylquinoxaline-2-carbonitriles with CH-acids: a new method for the phenazine ring synthesis. Tetrahedron, 2014, 70, 4617-4625.	1.9	6
21	The S HN-Amination of Heteroaromatic Compounds. Topics in Heterocyclic Chemistry, 2013, , 179-239.	0.2	8
22	Reaction of 3-Alkynylquinoxaline-2-carbonitriles with Sodium Azide: an Experimental and Theoretical Study. Chemistry of Heterocyclic Compounds, 2013, 49, 1255-1263.	1.2	4
23	Quantum chemical studies of the oxidative alkylamination of diazinones. Russian Chemical Bulletin, 2013, 62, 1156-1163.	1.5	6
24	Cyclizations of enediynes under the action of electrophiles. Chemistry of Heterocyclic Compounds, 2013, 49, 116-139.	1.2	10
25	Nucleophilic cyclization of 3-alkynylquinoxaline-2-carbonitriles into pyrido[3,4-b]quinoxalines. Tetrahedron, 2013, 69, 9804-9812.	1.9	8
26	Electrophilic cyclizations of 2,3-dialkynylquinoxalines and 1,2-dialkynylbenzenes: a comparative study. Tetrahedron, 2013, 69, 910-917.	1.9	12
27	Synthesis of 2-Alkynyl-, 4-Alkynyl-, and 2,7-Dialkynyl-1,8-bis(dimethylÂamino)naphthalenes and the Unexpected Influence of ortho-Alkynyl Groups on Their Basicity. Synlett, 2013, 24, 2515-2518.	1.8	10
28	Reactions of oxidative nucleophilic substitution of hydrogen in nitroarenes. Russian Chemical Bulletin, 2012, 61, 1321-1341.	1.5	12
29	Nucleophilic cyclizations of enediynes as a method for polynuclear heterocycle synthesis. Chemistry of Heterocyclic Compounds, 2012, 48, 82-94.	1.2	14
30	New insight into anionic cyclizations of alkynyl- and ortho-dialkynylarenes: a specific reactivity of 3-alkynyl-2-chloro- and 2,3-dialkynylquinoxalines and related compounds toward CH-acids' carbanions. Tetrahedron, 2012, 68, 488-498.	1.9	12
31	Synthesis of pteridines fused to heterocycles. Russian Chemical Reviews, 2011, 80, 495-529.	6.5	5
32	ONSH: Optimization of Oxidative Alkylamination Reactions through Study of the Reaction Mechanism. Journal of Organic Chemistry, 2010, 75, 5126-5133.	3.2	41
33	Synthesis of (Alkylamino)nitroarenes by Oxidative Alkylamination of Nitroarenes. European Journal of Organic Chemistry, 2009, 2009, 564-574.	2.4	13
34	Benzobis(pyrrolopyrimidopiridazines): Molecular structure and properties of the first Ï€â€electronic analogues of dibenzo[<i>a</i> , <i>o</i>]picene. Journal of Heterocyclic Chemistry, 2008, 45, 195-199.	2.6	6
35	Oxidative alkylamination of azinones as a direct route to aminoazinones: study of some condensed diazinones. Tetrahedron, 2008, 64, 696-707.	1.9	44
36	Nucleophilic Aromatic Substitution of Hydrogen as a Tool for Heterocyclic Ring Annulation. Advances in Heterocyclic Chemistry, 2007, , 57-115.	1.7	33

ANNA V GULEVSKAYA

#	Article	IF	CITATIONS
37	Cycloalkano[1″,2″:4,5;4″,3″:4′,5′]bis(pyrrolo[2,3-c]pyrimido[5,4-e]pyridazines): synthesis, struct mechanism of their formation. Tetrahedron, 2006, 62, 652-661.	ure and 1.9	10
38	C–N Bond Formation by the Oxidative Alkylamination of Azines: Comparison of AgPy2MnO4 versus KMnO4 as Oxidant. European Journal of Organic Chemistry, 2006, 2006, 5305-5314.	2.4	23
39	Pyrimido[4,5- <i>c</i>]pyridazine-5,7(6 <i>H</i> , 8 <i>H</i>)-diones: Marvelous substrates for study of nucleophilic substitution of hydrogen. Journal of Heterocyclic Chemistry, 2005, 42, 375-385.	2.6	9
40	Synthesis and heterocyclizations of 3-alkynyl-6,8-dimethylpyrimido-[4,5-c]pyridazine-5,7(6H,8H)-diones and their lumazine analogues. Journal of Heterocyclic Chemistry, 2005, 42, 413-419.	2.6	12
41	6,8-Dimethylpyrimido[4,5-c]pyridazine-5,7(6H,8H)-dione: New Heterocyclizations Based on SNH-Methodology. Unexpected Formation of the First Iso-ï€-Electronic Analogue (XIX) of the Still Unknown Dibenzo[a,o]pycene ChemInform, 2004, 35, no.	0.0	2
42	6,8-Dimethylpyrimido[4,5-c]pyridazine-5,7(6H,8H)-dione: A Novel Approach to Imidazoline (Imidazole) Ring Annulation Based on the SNH Methodology ChemInform, 2003, 34, no.	0.0	0
43	6,8-Dimethylpyrimido[4,5-c]pyridazine-5,7(6H,8H)-dione: new heterocyclizations based on SNH-methodology. Unexpected formation of the first iso-ï€-electronic analogue of the still unknown dibenzo[a,o]pycene. Tetrahedron, 2003, 59, 7669-7679.	1.9	23
44	6,8-Dimethylpyrimido[4,5-c]pyridazine-5,7(6H,8H)-dione: a novel approach to imidazoline (imidazole) ring annulation based on the methodology. Mendeleev Communications, 2002, 12, 157-159.	1.6	7
45	6,8-Dimethylpyrimido[4,5-c]pyridazine-5,7(6H,8H)-dione: a novel method of pyrrole-ring annulation to an azine nucleus based on a tandem SNH–SNH process. Tetrahedron Letters, 2001, 42, 5981-5983.	1.4	22
46	Reaction of 6,8-dimethylpyrimido[4,5-c]pyridazine-5,7(6H,8H)-dione with α,ï‰-diamines as the first example of tandem nucleophilic substitution in neutral azines. Mendeleev Communications, 2000, 10, 150-151.	1.6	23