James A Bain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4959904/publications.pdf

Version: 2024-02-01

185998 253896 2,850 168 28 43 h-index citations g-index papers 168 168 168 2534 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Influence of stress and texture on soft magnetic properties of thin films. IEEE Transactions on Magnetics, 2002, 38, 3501-3520.	1.2	116
2	Single-chip computers with microelectromechanical systems-based magnetic memory (invited). Journal of Applied Physics, 2000, 87, 6680-6685.	1.1	95
3	Oxygen Vacancy Creation, Drift, and Aggregation in TiO ₂ â€Based Resistive Switches at Low Temperature and Voltage. Advanced Functional Materials, 2015, 25, 2876-2883.	7.8	81
4	Imaging of quantized magnetostatic modes using spatially resolved ferromagnetic resonance. Journal of Applied Physics, 2002, 91, 8034.	1.1	72
5	Electronic Instabilities Leading to Electroformation of Binary Metal Oxideâ€based Resistive Switches. Advanced Functional Materials, 2014, 24, 5522-5529.	7.8	70
6	Elastic strains and coherency stresses in Mo/Ni multilayers. Physical Review B, 1991, 44, 1184-1192.	1.1	69
7	Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser. Applied Physics Letters, 2003, 83, 3245-3247.	1.5	67
8	Acousto-optical modulation of thin film lithium niobate waveguide devices. Photonics Research, 2019, 7, 1003.	3.4	67
9	Computational investigations into the operating window forÂmemristive devices based on homogeneous ionic motion. Applied Physics A: Materials Science and Processing, 2011, 102, 877-883.	1.1	56
10	Application of Image Processing to Characterize Patterning Noise in Self-Assembled Nano-Masks for Bit-Patterned Media. IEEE Transactions on Magnetics, 2009, 45, 3523-3526.	1.2	54
11	High frequency initial permeability of NiFe and FeAlN. IEEE Transactions on Magnetics, 1998, 34, 1438-1440.	1.2	53
12	Enhancement of Thermal Conductance at Metal-Dielectric Interfaces Using Subnanometer Metal Adhesion Layers. Physical Review Applied, 2016, 5, .	1.5	51
13	Spontaneous current constriction in threshold switching devices. Nature Communications, $2019, 10, 1628.$	5.8	51
14	Phase Coupling and Control of Oxide-Based Oscillators for Neuromorphic Computing. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 2015, 1, 58-66.	1.1	50
15	Ridge waveguide as a near-field optical source. Applied Physics Letters, 2003, 83, 4474-4476.	1.5	48
16	Two-Dimensional Pulse Response and Media Noise Modeling for Bit-Patterned Media. IEEE Transactions on Magnetics, 2008, 44, 3789-3792.	1.2	47
17	Low resistance, high dynamic range reconfigurable phase change switch for radio frequency applications. Applied Physics Letters, 2010, 97, .	1.5	43
18	Considerations in the design of probe heads for 100 Gbit/in/sup 2/ recording density. IEEE Transactions on Magnetics, 1997, 33, 2893-2895.	1.2	42

#	Article	IF	CITATIONS
19	<i>In Situ</i> TEM Imaging of Defect Dynamics under Electrical Bias in Resistive Switching Rutile-TiO ₂ . Microscopy and Microanalysis, 2015, 21, 140-153.	0.2	42
20	Crystallographic anisotropy in thin film magnetic recording media analyzed with xâ€ray diffraction. Journal of Applied Physics, 1993, 73, 7591-7598.	1.1	39
21	Electro-Thermal Model of Threshold Switching in TaO _{<i>x</i>} -Based Devices. ACS Applied Materials & Devices. ACS Applied M	4.0	39
22	Three-Terminal Probe Reconfigurable Phase-Change Material Switches. IEEE Transactions on Electron Devices, 2010, 57, 312-320.	1.6	37
23	12.5 THz Fco GeTe Inline Phase-Change Switch Technology for Reconfigurable RF and Switching Applications. , 2014, , .		37
24	Thermal Williams–Comstock Model for Predicting Transition Lengths in a Heat-Assisted Magnetic Recording System. IEEE Transactions on Magnetics, 2004, 40, 137-147.	1.2	35
25	Formation of the Conducting Filament in TaO _{<i>x</i>} -Resistive Switching Devices by Thermal-Gradient-Induced Cation Accumulation. ACS Applied Materials & Devices, 2018, 10, 23187-23197.	4.0	35
26	Thermometry of Filamentary RRAM Devices. IEEE Transactions on Electron Devices, 2015, 62, 2972-2977.	1.6	34
27	Characterization of heat-assisted magnetic probe recording on CoNi/Pt multilayers. Journal of Magnetism and Magnetic Materials, 2006, 305, 16-23.	1.0	30
28	Impact of Joule heating on the microstructure of nanoscale TiO2 resistive switching devices. Journal of Applied Physics, $2013,113,113$	1.1	30
29	Transient Thermometry and High-Resolution Transmission Electron Microscopy Analysis of Filamentary Resistive Switches. ACS Applied Materials & Samp; Interfaces, 2016, 8, 20176-20184.	4.0	30
30	Measurement of Ga implantation profiles in the sidewall and bottom of focused-ion-beam-etched structures. Applied Physics Letters, 2004, 84, 3331-3333.	1.5	28
31	Stable Metallic Enrichment in Conductive Filaments in TaO <i></i> <8aeBased Resistive Switches Arising from Competing Diffusive Fluxes. Advanced Electronic Materials, 2019, 5, 1800954.	2.6	28
32	A Reconfigurable Dual-Frequency Narrowband CMOS LNA Using Phase-Change RF Switches. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 4689-4702.	2.9	25
33	MFM quantification of magnetic fields generated by ultra-small single pole perpendicular heads. IEEE Transactions on Magnetics, 1998, 34, 2030-2032.	1.2	24
34	Separation of contributions to spin valve interlayer exchange coupling field by temperature dependent coupling field measurements. Journal of Applied Physics, 2002, 91, 7113.	1.1	24
35	A Model for Mark Size Dependence on Field Emission Voltage in Heat-Assisted Magnetic Probe Recording on CoNi/Pt Multilayers. IEEE Transactions on Magnetics, 2004, 40, 2549-2551.	1.2	24
36	Transient characterization of the electroforming process in TiO2 based resistive switching devices. Applied Physics Letters, 2013, 102, 023507.	1.5	24

#	Article	IF	Citations
37	Dislocation impact on resistive switching in single-crystal SrTiO3. Journal of Applied Physics, 2013, 113,	1.1	24
38	Electrode influence on the transport through SrRuO3â^•Cr-doped SrZrO3/metal junctions. Applied Physics Letters, 2007, 90, 202107.	1.5	23
39	High-Frequency TaO _{<italic>x</italic>} -Based Compact Oscillators. IEEE Transactions on Electron Devices, 2015, 62, 3857-3862.	1.6	23
40	Switching dynamics of TaOx-based threshold switching devices. Journal of Applied Physics, 2018, 123, .	1.1	23
41	A Phase-Change Via-Reconfigurable CMOS \$LC\$ VCO. IEEE Transactions on Electron Devices, 2013, 60, 3979-3988.	1.6	22
42	Dynamics of electroforming in binary metal oxide-based resistive switching memory. Journal of Applied Physics, 2015, 118, 114903.	1.1	22
43	Scaling behavior of oxide-based electrothermal threshold switching devices. Nanoscale, 2017, 9, 14139-14148.	2.8	22
44	Design Criteria in Sizing Phase-Change RF Switches. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 4531-4540.	2.9	21
45	Focused-ion-beam induced grain growth in magnetic materials for recording heads. Journal of Applied Physics, 2002, 91, 6830.	1.1	20
46	Fabrication of nanomagnetic probes via focused ion beam etching and deposition. Nanotechnology, 2002, 13, 619-622.	1.3	20
47	The effect of external magnetic field on mark size in heat-assisted probe recording on CoNiâ [•] Pt multilayers. Journal of Applied Physics, 2006, 99, 023902.	1.1	20
48	Elimination of high transient currents and electrode damage during electroformation of TiO ₂ -based resistive switching devices. Journal Physics D: Applied Physics, 2012, 45, 395101.	1.3	20
49	Mechanism of localized electrical conduction at the onset of electroforming in TiO2 based resistive switching devices. Applied Physics Letters, 2014, 104, .	1.5	20
50	Micromagnetic simulation of an ultrasmall single-pole perpendicular write head. Journal of Applied Physics, 2000, 87, 6636-6638.	1.1	19
51	Recording layer influence on the dynamics of a soft underlayer. IEEE Transactions on Magnetics, 2002, 38, 1994-1996.	1.2	19
52	Dynamic domain motion of thermal-magnetically formed marks on CoNiâ [•] Pt multilayers. Journal of Applied Physics, 2006, 100, 053901.	1.1	19
53	Origin and Optimization of RF Power Handling Limitations in Inline Phase-Change Switches. IEEE Transactions on Electron Devices, 2017, 64, 3934-3942.	1.6	19
54	X-ray diffraction characterization of stress and crystallographic texture in thin film media. IEEE Transactions on Magnetics, 1993, 29, 300-306.	1.2	18

#	Article	IF	CITATIONS
55	The effect of substrate temperature on the magnetic properties of FeAIN thin films for recording heads. IEEE Transactions on Magnetics, 1995, 31, 2703-2705.	1.2	18
56	Thin film tape recording heads with high moment FeAIN poles. IEEE Transactions on Magnetics, 1996, 32, 166-171.	1.2	18
57	Dependence of thermomagnetic mark size on applied STM voltage in Co-Pt multilayers. IEEE Transactions on Magnetics, 2002, 38, 1895-1897.	1.2	18
58	The effect of nitrogen partitioning on the magnetic properties of FeAlN films. IEEE Transactions on Magnetics, 1996, 32, 4541-4543.	1.2	17
59	Evanescent Coupling Between Dielectric and Plasmonic Waveguides for HAMR Applications. IEEE Transactions on Magnetics, 2011, 47, 2364-2367.	1.2	17
60	Investigating Pattern Transfer in the Small-Gap Regime Using Electron-Beam Stabilized Nanoparticle Array Etch Masks. IEEE Transactions on Magnetics, 2010, 46, 2307-2310.	1.2	16
61	Effect of stress on stripe domain onset in sputtered FeAlN and CoFe films. Journal of Applied Physics, 2002, 91, 7830.	1.1	15
62	Thin-film recording media on flexible substrates for tape applications. IEEE Transactions on Magnetics, 2005, 41, 654-659.	1.2	15
63	Spin transfer torque switching of magnetic tunnel junctions using a conductive atomic force microscope. Applied Physics Letters, 2009, 95, 132510.	1.5	15
64	Band alignment between GeTe and SiO2/metals for characterization of junctions in nonvolatile resistance change elements. Applied Physics Letters, 2011, 98, .	1.5	15
65	Thermal-gradient-driven elemental segregation in Ge2Sb2Te5 phase change memory cells. Applied Physics Letters, 2019, 114, .	1.5	15
66	The effect of surface topography on the soft magnetic properties of FeAlN films. IEEE Transactions on Magnetics, 1995, 31, 2700-2702.	1.2	14
67	Micromagnetic simulation of effect of stress-induced anisotropy in soft magnetic thin films. Journal of Applied Physics, 2004, 95, 6864-6866.	1.1	14
68	A 3/5 GHz reconfigurable CMOS low-noise amplifier integrated with a four-terminal phase-change RF switch. , 2015, , .		14
69	AIN Barriers for Capacitance Reduction in Phase-Change RF Switches. IEEE Electron Device Letters, 2016, 37, 568-571.	2.2	14
70	Nanoscale thermal transport aspects of heat-assisted magnetic recording devices and materials. MRS Bulletin, 2018, 43, 112-118.	1.7	14
71	The influence of media optical properties on the efficiency of optical power delivery for heat assisted magnetic recording. Journal of Applied Physics, 2011, 109, 07B775.	1,1	13
72	Experimental estimates of in-plane thermal conductivity in FePt-C granular thin film heat assisted magnetic recording media using a model layered system. Applied Physics Letters, 2013, 103, .	1.5	13

#	Article	IF	CITATIONS
73	Experimental Demonstration of AlN Heat Spreaders for the Monolithic Integration of Inline Phase-Change Switches. IEEE Electron Device Letters, 2018, 39, 610-613.	2.2	13
74	Evolution of the conductive filament with cycling in TaOx-based resistive switching devices. Journal of Applied Physics, 2020, 128, .	1.1	13
75	Magnetization reduction due to oxygen contamination of bias sputtered Fe/sub 35/Co/sub 65/ thin films. IEEE Transactions on Magnetics, 2002, 38, 3030-3032.	1.2	12
76	Local degradation of magnetic properties in magnetic thin films irradiated by Ga/sup +/ focused-ion-beams. IEEE Transactions on Magnetics, 2002, 38, 2237-2239.	1.2	12
77	The effect of stress-induced anisotropy in patterned FeCo thin-film structures. Journal of Applied Physics, 2006, 99, 08B706.	1.1	12
78	Thermographic analysis of localized conductive channels in bipolar resistive switching devices. Journal Physics D: Applied Physics, 2011, 44, 185103.	1.3	12
79	Temperature overshoot as the cause of physical changes in resistive switching devices during electro-formation. Journal of Applied Physics, 2020, 127, .	1.1	12
80	High frequency dynamics of the soft underlayer in perpendicular recording system. Journal of Applied Physics, 2002, 91, 8052.	1.1	11
81	Characterization of very small aperture GaN lasers. , 2004, , .		11
82	Effects of substrate bias on CoCrPt-SiO2 magnetic recording media. Journal of Applied Physics, 2006, 99, 08G910.	1.1	11
83	Use of bias sputtering to enhance decoupling in oxide composite perpendicular recording media. Applied Physics Letters, 2007, 90, 252511.	1.5	11
84	Low temperature electroformation of TaOx-based resistive switching devices. APL Materials, 2016, 4, 016101.	2.2	11
85	ON-state evolution in lateral and vertical VO ₂ threshold switching devices. Nanotechnology, 2017, 28, 405201.	1.3	11
86	Residual stress optimization in FeAlN pole materials. IEEE Transactions on Magnetics, 2000, 36, 2536-2538.	1.2	10
87	Controlling the magnetic properties of CoCrPt thin films by means of thin hexagonal-close-packed intermediate layers. Journal of Applied Physics, 2002, 91, 7065.	1.1	10
88	Compositionally matched nitrogen-doped Ge2Sb2Te5/Ge2Sb2Te5 superlattice-like structures for phase change random access memory. Applied Physics Letters, 2013, 103, 133507.	1.5	10
89	Control of stress and plasma-induced heating during dc magnetron sputtering of permalloy films for microelectromechanical systems. Journal of Applied Physics, 2002, 91, 6824.	1.1	9
90	Detailed modeling of temperature rise in giant magnetoresistive sensor during an electrostatic discharge event. Journal of Applied Physics, 2004, 95, 6780-6782.	1.1	9

#	Article	IF	CITATIONS
91	The Application of Sputtered Thin Film in Advanced Recording Tape Media. IEEE Transactions on Magnetics, 2004, 40, 2404-2406.	1.2	9
92	Field localization in very small aperture lasers studied by apertureless near-field microscopy. Applied Optics, 2006, 45, 6192.	2.1	9
93	High frequency susceptibility of closure domain structures calculated using micromagnetic modeling. Journal of Applied Physics, 2006, 99, 08B708.	1.1	9
94	Thermal limits on field alignment of nanoparticle FePt media. Applied Physics Letters, 2006, 88, 242508.	1.5	9
95	Dynamics of perpendicular recording heads. IEEE Transactions on Magnetics, 2001, 37, 1376-1378.	1.2	8
96	Self-assembled nanoparticle arrays as nanomasks for pattern transfer. Journal Physics D: Applied Physics, 2008, 41, 134001.	1.3	8
97	High-speed in-situ pulsed thermometry in oxide RRAMs. , 2014, , .		8
98	Extraction of Elastooptic Coefficient of Thin-Film Arsenic Trisulfide Using a Mach–Zehnder Acoustooptic Modulator on Lithium Niobate. Journal of Lightwave Technology, 2020, 38, 2053-2059.	2.7	8
99	Electrical and Thermal Dynamics of Self-Oscillations in TaO _{<i>x</i>} -Based Threshold Switching Devices. ACS Applied Electronic Materials, 2020, 2, 683-691.	2.0	8
100	Dropout-tolerant read channels. IEEE Journal on Selected Areas in Communications, 2001, 19, 744-755.	9.7	7
101	An undergraduate laboratory in magnetic recording fundamentals. IEEE Transactions on Education, 2001, 44, 224-231.	2.0	7
102	Sub-nanosecond non-Arrhenius magnetic switching in perpendicular multilayers. IEEE Transactions on Magnetics, 2001, 37, 1570-1572.	1.2	7
103	The role of MFM signal in mark size measurement in probe-based magnetic recording on CoNi/Pt multilayers. Physica B: Condensed Matter, 2007, 387, 328-332.	1.3	7
104	Modeling of Polarization Effects in Au Nanodots Excited With InAs Quantum Dot Emitters for Use as a HAMR Heat Source. IEEE Transactions on Magnetics, 2013, 49, 3560-3563.	1.2	7
105	Xâ€ray analysis of compositional modulation in Co/Pt multilayer films for magnetoâ€optic recording. Journal of Applied Physics, 1993, 74, 996-1000.	1.1	6
106	Kerr imaging of a thin film magnetic transducer to measure thin film head fields. IEEE Transactions on Magnetics, 2001, 37, 2761-2763.	1.2	6
107	Real-time observation of sub-nanosecond magnetic switching in perpendicular multilayers. Journal of Magnetism and Magnetic Materials, 2001, 235, 138-142.	1.0	6
108	High coercivity Co-alloy thin films on polymer substrates. IEEE Transactions on Magnetics, 2001, 37, 1640-1642.	1.2	6

#	Article	IF	Citations
109	Use of room-temperature bias sputtering to decrease intergranular coupling in magnetic media deposited on polymeric substrates. IEEE Transactions on Magnetics, 2003, 39, 3616-3618.	1.2	6
110	Analysis of Transition Shape and Adjacent Track Aging for 1 <tex>\$hboxTb/in^2\$</tex> Write Head Designs. IEEE Transactions on Magnetics, 2004, 40, 2576-2578.	1.2	6
111	Laser Diode Active Height Control for Near Field Optical Storage. Japanese Journal of Applied Physics, 2006, 45, 1193-1196.	0.8	6
112	A reactive ion milling process for patterning narrow track iron nitride recording head poles at the wafer level. IEEE Transactions on Magnetics, 1997, 33, 2830-2832.	1.2	5
113	Analysis of dropout peakshift in magnetic tape recording. IEEE Transactions on Magnetics, 2000, 36, 2170-2172.	1.2	5
114	Mark shapes in hybrid recording. Applied Physics Letters, 2002, 80, 1835-1837.	1.5	5
115	<title>Experimenatal test bed for hybrid recording</title> ., 2002, 4342, 502.		5
116	Dynamic Kerr imaging of soft underlayers for perpendicular recording applications (invited). Journal of Applied Physics, 2002, 91, 8665.	1.1	5
117	The role of the gap in single pole heads in perpendicular recording. IEEE Transactions on Magnetics, 2002, 38, 1658-1663.	1.2	5
118	Effects of focused-ion-beam irradiation on perpendicular write head performance. Journal of Applied Physics, 2003, 93, 6459-6461.	1.1	5
119	Recording properties of CoCrPt tape media sputter-deposited at room temperature on polymeric substrates. Journal of Applied Physics, 2003, 93, 7783-7785.	1.1	5
120	Magnetically defined domain isolation for studies of nucleation and growth coercivities. IEEE Transactions on Magnetics, 2005, 41, 3763-3765.	1.2	5
121	Aberration Corrected Lorentz Microscopy for Perpendicular Magnetic Recording Media. Microscopy and Microanalysis, 2008, 14, 832-833.	0.2	5
122	Enhancing CMOS Using Nanoelectronic Devices: A Perspective on Hybrid Integrated Systems. Proceedings of the IEEE, 2010, 98, 2061-2075.	16.4	5
123	Magnetoresistance in granular films formed by CoFe and phase change material. Applied Physics A: Materials Science and Processing, 2013, 113, 221-229.	1.1	5
124	In situ biasing TEM investigation of resistive switching events in TiO <inf>2</inf> -based RRAM. , 2014, , .		5
125	Locally Rewritable Codes for Resistive Memories. IEEE Journal on Selected Areas in Communications, 2016, 34, 2470-2485.	9.7	5
126	Multi-tapped magnetoresistive heads for magnetic tape tracking servo. IEEE Transactions on Magnetics, 1998, 34, 1904-1906.	1.2	4

#	Article	IF	CITATIONS
127	Limitations to track following imposed by position error signal SNR using a multi-tapped magnetoresistive servo head. IEEE Transactions on Magnetics, 1999, 35, 740-745.	1.2	4
128	A study of near-field aperture geometry effects on very small aperture lasers (VSAL). , 2003, , .		4
129	MAMMOS read-only memory. , 2004, 5380, 163.		4
130	A model of heat transfer in STM-based magnetic recording on CoNi/Pt multilayers. Physica B: Condensed Matter, 2006, 381, 204-208.	1.3	4
131	Co Alloy-\${hbox{SiO}}_{2}\$ Granular-Type Longitudinal Media for Sputtered Tape Applications. IEEE Transactions on Magnetics, 2007, 43, 3497-3501.	1.2	4
132	Magnetic Decay at Elevated Temperature Relevant to Heat-Assisted Magnetic Recording. IEEE Transactions on Magnetics, 2009, 45, 883-888.	1.2	4
133	A Split-Pole-Gapped NFT Write Head Design for Transition Curvature Reduction in Heat-Assisted Magnetic Recording. IEEE Transactions on Magnetics, 2018, 54, 1-4.	1.2	4
134	Effects of polymeric substrate roughness on head-medium spacing and recording properties of sputtered magnetic tape. IEEE Transactions on Magnetics, 2005, 41, 2529-2533.	1.2	3
135	Optical Feedback Height Control System Using Laser Diode Sensor for Near-Field Data Storage Applications. Journal of Lightwave Technology, 2007, 25, 3704-3709.	2.7	3
136	A Method for Simultaneous Position and Timing Error Detection for Bit-Patterned Media. IEEE Transactions on Magnetics, 2009, 45, 3749-3752.	1.2	3
137	Fabrication and Recording of Bit Patterned Media Prepared by Rotary Stage Electron Beam Lithography. IEEE Transactions on Magnetics, 2011, 47, 2656-2659.	1.2	3
138	Pattern transfer with stabilized nanoparticle etch masks. Nanotechnology, 2013, 24, 085303.	1.3	3
139	Magnetically reconfigurable pixelated antenna. Microwave and Optical Technology Letters, 2019, 61, 2348-2353.	0.9	3
140	In-Situ Observation of The Initial Stages of Co (0001) Epitaxy on Pt (111) Using Grazing Incidence X-Ray Diffraction. Materials Research Society Symposia Proceedings, 1993, 312, 291.	0.1	2
141	Structural Characterization of Pt/Co Multilayers for Magnetooptic Recording Using X-Ray Diffraction. Materials Research Society Symposia Proceedings, 1993, 313, 799.	0.1	2
142	Surface nitrogen concentration dependence of the nitrogen incorporation in reactively sputtered FeXN films. Journal of Applied Physics, 2002, 91, 6827.	1,1	2
143	Prototype mode index lens for heat-assisted magnetic recording. , 2004, , .		2
144	Heat-assisted magnetic probe recording on a granular CoNi/Pt multilayered film. Journal Physics D: Applied Physics, 2006, 39, 2485-2487.	1.3	2

#	Article	IF	CITATIONS
145	Laser diode active height control system for data storage applications. , 2007, , .		2
146	Characterization of Conducting Atomic Force Microscopy for Use With Magnetic Tunnel Junctions. IEEE Transactions on Magnetics, 2010, 46, 1741-1744.	1.2	2
147	A Process for Transferring and Patterning InAs Quantum Dot Optical Gain Media for HAMR Near Field Optical Sources. IEEE Transactions on Magnetics, 2013, 49, 3564-3567.	1.2	2
148	Investigation of tip current and normal force measured simultaneously during local oxidation of titanium using dualâ€mode scanning probe microscopy. Micro and Nano Letters, 2014, 9, 332-336.	0.6	2
149	The Role of STM Tip Shape in Heat Assisted Magnetic Probe Recording on CONI/PT Film. , 2004, , .		2
150	Effects of High Current Density at Nanoscale Point Contacts. , 2008, , .		2
151	Improvement of preferred orientation of NiAl/CrMn underlayers deposited on prebaked tape substrates. Journal of Applied Physics, 2002, 91, 8736.	1.1	1
152	Simultaneous PES Generation, Timing Recovery, and Multi-Track Read on Patterned Media: Concept and Performance. IEEE Transactions on Magnetics, 2010, 46, 825-829.	1.2	1
153	Extendibility of traditional perpendicular magnetic recording for hard disk drives. Journal of Applied Physics, 2011, 109, 07B774.	1.1	1
154	Comparison of electric field dependent activation energy for electroformation in TaO < inf>x < / inf> and TiO < inf>x < / inf> based RRAMs. , 2013, , .		1
155	Novel CMOS-compatible a-Si based oscillator and threshold switch. , 2015, , .		1
156	Transient thermometry and HRTEM analysis of RRAM thermal dynamics during switching and failure. , $2016, , .$		1
157	Phase based boolean computation using GeTe <inf>6</inf> oscillators., 2017,,.		1
158	Acousto-Optic Gyroscope with Improved Sensitivity and 100 second Stability in a Small Form Factor., $2019, \dots$		1
159	Nanoscale Energy Transport in Information Technology Research With an Application to High-Density Data Storage Devices and Systems. , 2002, , .		1
160	Efficiency of light coupling from a light delivery system to a planar waveguide for optical and hybrid recording heads., 2003,,.		0
161	Characterization of refraction at a waveguide step for fabrication of mode index lenses. , 2004, 5380, 697.		0
162	Thermal Design for Probe Transformation of Phase Change Vias. , 2008, , .		0

#	Article	IF	CITATIONS
163	HAMR Adjacent Track Stability in the Presence of a Medium Curie Temperature Distribution. IEEE Transactions on Magnetics, 2010, 46, 2462-2465.	1.2	0
164	Thermal conductivity measurements of nitrogen-doped Ge < inf>2 < /inf>Sb < inf>2 < /inf>Te < inf>5 < /inf>. , 2011, , .		0
165	Self-engaging and disengaging CMOS-MEMS probes. , 2011, , .		0
166	Susceptibility of magnetic information storage to power frequency magnetic fields. IEEE Electromagnetic Compatibility Magazine, 2013, 2, 59-67.	0.1	0
167	Impact of straightened thermal profiles generated by gapped near field transducers on HAMR SNR. AIP Advances, 2020, 10, 015326.	0.6	0
168	Simulation of a Thermally Efficient Heat-Assisted Magnetic Recording Ridge Waveguide NFT on an AlN Heat Sink. IEEE Transactions on Magnetics, 2022, 58, 1-7.	1.2	0