
Joshua W Lampe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/495966/publications.pdf Version: 2024-02-01

LOSHUA W/ LAMPE

#	Article	IF	CITATIONS
1	The standardized method and clinical experience may improve the reliability of visually assessed capillary refill time. American Journal of Emergency Medicine, 2021, 44, 284-290.	1.6	12
2	Evaluation of accuracy of capillary refill index with pneumatic fingertip compression. Journal of Clinical Monitoring and Computing, 2021, 35, 135-145.	1.6	14
3	A method for measuring the molecular ratio of inhalation to exhalation and effect of inspired oxygen levels on oxygen consumption. Scientific Reports, 2021, 11, 12815.	3.3	8
4	Towards Personalized Closed-Loop Mechanical CPR: A Model Relating Carotid Blood Flow to Chest Compression Rate and Duration. IEEE Transactions on Biomedical Engineering, 2020, 67, 1253-1262.	4.2	4
5	Low temperature increases capillary blood refill time following mechanical fingertip compression of healthy volunteers: prospective cohort study. Journal of Clinical Monitoring and Computing, 2019, 33, 259-267.	1.6	17
6	Does training level affect the accuracy of visual assessment of capillary refill time?. Critical Care, 2019, 23, 157.	5.8	16
7	Increased Survival Time With SS-31 After Prolonged Cardiac Arrest in Rats. Heart Lung and Circulation, 2019, 28, 505-508.	0.4	13
8	Blood refill time: Clinical bedside monitoring of peripheral blood perfusion using pulse oximetry sensor and mechanical compression. American Journal of Emergency Medicine, 2018, 36, 2310-2312.	1.6	8
9	Comprehensive analysis of phospholipids in the brain, heart, kidney, and liver: brain phospholipids are least enriched with polyunsaturated fatty acids. Molecular and Cellular Biochemistry, 2018, 442, 187-201.	3.1	94
10	The role of decreased cardiolipin and impaired electron transport chain in brain damage due to cardiac arrest. Neurochemistry International, 2018, 120, 200-205.	3.8	14
11	Dissociated Oxygen Consumption and Carbon Dioxide Production in the Post–Cardiac Arrest Rat: A Novel Metabolic Phenotype. Journal of the American Heart Association, 2018, 7, .	3.7	30
12	Comparing phospholipid profiles of mitochondria and whole tissue: Higher PUFA content in mitochondria is driven by increased phosphatidylcholine unsaturation. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1093-1094, 147-157.	2.3	12
13	Effect of compression waveform and resuscitation duration on blood flow and pressure in swine: One waveform does not optimally serve. Resuscitation, 2018, 131, 55-62.	3.0	8
14	Potential of lysophosphatidylinositol as a prognostic indicator of cardiac arrest using a rat model. Biomarkers, 2017, 22, 755-763.	1.9	11
15	Improved ventilation monitoring during CPR. Resuscitation, 2017, 110, A3-A4.	3.0	0
16	The Responses of Tissues from the Brain, Heart, Kidney, and Liver to Resuscitation following Prolonged Cardiac Arrest by Examining Mitochondrial Respiration in Rats. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-7.	4.0	29
17	DHA-supplemented diet increases the survival of rats following asphyxia-induced cardiac arrest and cardiopulmonary bypass resuscitation. Scientific Reports, 2016, 6, 36545.	3.3	7
18	The effects of early high-volume hemofiltration on prolonged cardiac arrest in rats with reperfusion by cardiopulmonary bypass: a randomized controlled animal study. Intensive Care Medicine Experimental, 2016, 4, 25.	1.9	9

Joshua W Lampe

#	Article	IF	CITATIONS
19	Blood Pressure– and Coronary Perfusion Pressure–Targeted Cardiopulmonary Resuscitation Improves 24-Hour Survival From Ventricular Fibrillation Cardiac Arrest. Critical Care Medicine, 2016, 44, e1111-e1117.	0.9	64
20	Volume infusion cooling increases end-tidal carbon dioxide and results in faster and deeper cooling during intra-cardiopulmonary resuscitation hypothermia induction. Intensive Care Medicine Experimental, 2015, 3, 37.	1.9	2
21	Developing a kinematic understanding of chest compressions: the impact of depth and release time on blood flow during cardiopulmonary resuscitation. BioMedical Engineering OnLine, 2015, 14, 102.	2.7	12
22	Persistently Altered Brain Mitochondrial Bioenergetics After Apparently Successful Resuscitation From Cardiac Arrest. Journal of the American Heart Association, 2015, 4, e002232.	3.7	33
23	Developing dual hemofiltration plus cardiopulmonary bypass in rodents. Journal of Surgical Research, 2015, 195, 196-203.	1.6	3
24	The Potential Application of Mitochondrial Medicine in Toxicologic Poisoning. Journal of Medical Toxicology, 2015, 11, 201-207.	1.5	2
25	Phospholipid alterations in the brain and heart in a rat model of asphyxia-induced cardiac arrest and cardiopulmonary bypass resuscitation. Molecular and Cellular Biochemistry, 2015, 408, 273-281.	3.1	31
26	Examination of Physiological Function and Biochemical Disorders in a Rat Model of Prolonged Asphyxia-Induced Cardiac Arrest followed by Cardio Pulmonary Bypass Resuscitation. PLoS ONE, 2014, 9, e112012.	2.5	18
27	Patient-Centric Blood Pressure–targeted Cardiopulmonary Resuscitation Improves Survival from Cardiac Arrest. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 1255-1262.	5.6	74
28	Understanding the Role of Exogenous and Endogenous Surfactants in Gas Embolism. ACS Symposium Series, 2012, , 395-418.	0.5	0
29	Protein Assembly at the Air–Water Interface Studied by Fluorescence Microscopy. Langmuir, 2011, 27, 12775-12781.	3.5	32
30	State of the Art in Therapeutic Hypothermia. Annual Review of Medicine, 2011, 62, 79-93.	12.2	114
31	Using 3-D dense packing models to predict surface tension change due to protein adsorption. International Journal of Transport Phenomena, 2011, 12, 283-300.	0.0	0
32	RAPID INDUCTION OF HETEROGENEOUS ICE NUCLEATION IN A BIOLOGICALLY COMPATIBLE COOLANT. International Journal of Transport Phenomena, 2011, 12, 307-317.	0.0	0
33	A rodent model of emergency cardiopulmonary bypass resuscitation with different temperatures after asphyxial cardiac arrest. Resuscitation, 2010, 81, 93-99.	3.0	101
34	Feasibility of intra-arrest hypothermia induction: A novel nasopharyngeal approach achieves preferential brain cooling. Resuscitation, 2010, 81, 1025-1030.	3.0	28
35	Imaging Macromolecular Interactions at an Interface. Langmuir, 2010, 26, 2452-2459.	3.5	15
36	Immediate short-duration hypothermia provides long-term protection in an in vivo model of traumatic axonal injury. Experimental Neurology, 2009, 215, 119-127.	4.1	36

Joshua W Lampe

#	Article	IF	CITATIONS
37	Rapid cooling for saving lives: a bioengineering opportunity. Expert Review of Medical Devices, 2007, 4, 441-446.	2.8	14
38	Gas Embolism and Surfactant-Based Intervention: Implications for Long-Duration Space-Based Activity. Annals of the New York Academy of Sciences, 2006, 1077, 256-269.	3.8	15
39	Impact dynamics of drops on thin films of viscoelastic wormlike micelle solutions. Journal of Non-Newtonian Fluid Mechanics, 2005, 125, 11-23.	2.4	23