Mrton Tpai

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4959475/marton-tapai-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

80 78 30,173 50 h-index g-index citations papers 80 6.8 36,447 4.77 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
78	Spin and quadrupolar effects in the secular evolution of precessing compact binaries with black hole, neutron star, gravastar, or boson star components. <i>Physical Review D</i> , 2021 , 103,	4.9	1
77	2-OGC: Open Gravitational-wave Catalog of Binary Mergers from Analysis of Public Advanced LIGO and Virgo Data. <i>Astrophysical Journal</i> , 2020 , 891, 123	4.7	98
76	Extending the PyCBC search for gravitational waves from compact binary mergers to a global network. <i>Physical Review D</i> , 2020 , 102,	4.9	15
75	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGOE first observing run. <i>Classical and Quantum Gravity</i> , 2018 , 35, 065010	3.3	62
74	GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. <i>Physical Review Letters</i> , 2018 , 120, 091101	7.4	120
73	All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. <i>Classical and Quantum Gravity</i> , 2018 , 35, 065009	3.3	12
72	First Search for Nontensorial Gravitational Waves from Known Pulsars. <i>Physical Review Letters</i> , 2018 , 120, 031104	7.4	50
71	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. <i>Living Reviews in Relativity</i> , 2018 , 21, 3	32.5	543
70	Investigating the Poor Match among Different Precessing Gravitational Waveforms. <i>Universe</i> , 2018 , 4, 56	2.5	
69	Full band all-sky search for periodic gravitational waves in the O1 LIGO data. <i>Physical Review D</i> , 2018 , 97,	4.9	37
68	Constraints on cosmic strings using data from the first Advanced LIGO observing run. <i>Physical Review D</i> , 2018 , 97,	4.9	60
67	Precessing Black Hole Binaries and Their Gravitational Radiation. <i>Universe</i> , 2018 , 4, 40	2.5	
66	GW170817: Measurements of Neutron Star Radii and Equation of State. <i>Physical Review Letters</i> , 2018 , 121, 161101	7.4	867
65	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. <i>Physical Review Letters</i> , 2018 , 120, 201102	7.4	60
64	Exploring the sensitivity of next generation gravitational wave detectors. <i>Classical and Quantum Gravity</i> , 2017 , 34, 044001	3.3	454
63	All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. <i>Physical Review D</i> , 2017 , 95,	4.9	54
62	Effects of waveform model systematics on the interpretation of GW150914. <i>Classical and Quantum Gravity</i> , 2017 , 34, 104002	3.3	74

61	Observation of Gravitational Waves from a Binary Black Hole Merger 2017 , 291-311		27
60	Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914. <i>Physical Review D</i> , 2017 , 95,	4.9	60
59	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. <i>Physical Review Letters</i> , 2017 , 118, 121101	7.4	137
58	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. <i>Physical Review Letters</i> , 2017 , 118, 121102	7.4	65
57	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. <i>Astrophysical Journal</i> , 2017 , 839, 12	4.7	107
56	The basic physics of the binary black hole merger GW150914. <i>Annalen Der Physik</i> , 2017 , 529, 1600209	2.6	45
55	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. <i>Physical Review Letters</i> , 2017 , 119, 141101	7.4	1270
54	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. <i>Astrophysical Journal</i> , 2017 , 847, 47	4.7	35
53	A gravitational-wave standard siren measurement of the Hubble constant. <i>Nature</i> , 2017 , 551, 85-88	50.4	413
52	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. <i>Physical Review Letters</i> , 2017 , 119, 161101	7.4	4272
51	Multi-messenger Observations of a Binary Neutron Star Merger. <i>Astrophysical Journal Letters</i> , 2017 , 848, L12	7.9	1935
50	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. <i>Astrophysical Journal Letters</i> , 2017 , 848, L13	7.9	1614
49	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. <i>Physical Review D</i> , 2017 , 96,	4.9	64
48	All-sky search for periodic gravitational waves in the O1 LIGO data. <i>Physical Review D</i> , 2017 , 96,	4.9	54
47	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. <i>Astrophysical Journal</i> , 2017 , 841, 89	4.7	42
46	Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube. <i>Physical Review D</i> , 2017 , 96,	4.9	32
45	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. <i>Astrophysical Journal Letters</i> , 2017 , 851, L16	7.9	133
44	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated with GW170817. Astrophysical Journal Letters, 2017, 850, L39	7.9	127

43	Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. <i>Astrophysical Journal Letters</i> , 2017 , 850, L35	7.9	104
42	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. <i>Physical Review Letters</i> , 2017 , 118, 221101	7.4	1609
41	Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544. <i>Physical Review D</i> , 2017 , 95,	4.9	14
40	Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. <i>Physical Review D</i> , 2017 , 95,	4.9	47
39	First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data. <i>Physical Review D</i> , 2017 , 96,	4.9	39
38	First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data. <i>Physical Review D</i> , 2017 , 96,	4.9	54
37	On the Progenitor of Binary Neutron Star Merger GW170817. <i>Astrophysical Journal Letters</i> , 2017 , 850, L40	7.9	50
36	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. <i>Astrophysical Journal Letters</i> , 2017 , 851, L35	7.9	809
35	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. <i>Astrophysical Journal Letters</i> , 2016 , 826, L13	7.9	183
34	Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. <i>Physical Review D</i> , 2016 , 94,	4.9	28
33	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. <i>Physical Review D</i> , 2016 , 94,	4.9	43
32	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR B LACK HOLE MERGERS FROM ADVANCED LIGOS FIRST OBSERVING RUN. <i>Astrophysical Journal Letters</i> , 2016 , 832, L21	7.9	130
31	Directly comparing GW150914 with numerical solutions of Einstein equations for binary black hole coalescence. <i>Physical Review D</i> , 2016 , 94,	4.9	76
30	All-sky search for long-duration gravitational wave transients with initial LIGO. <i>Physical Review D</i> , 2016 , 93,	4.9	27
29	Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. <i>Physical Review D</i> , 2016 , 93,	4.9	14
28	First low frequency all-sky search for continuous gravitational wave signals. <i>Physical Review D</i> , 2016 , 93,	4.9	29
27	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. <i>Physical Review D</i> , 2016 , 93,	4.9	253
26	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007 2 013. <i>Physical Review D</i> , 2016 , 93,	4.9	10

(2015-2016)

25	High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. <i>Physical Review D</i> , 2016 , 93,	4.9	80
24	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. <i>Physical Review Letters</i> , 2016 , 116, 131102	7.4	188
23	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. <i>Physical Review Letters</i> , 2016 , 116, 131103	7.4	328
22	SUPPLEMENT: IIOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914II(2016, ApJL, 826, L13). <i>Astrophysical Journal, Supplement Series</i> , 2016 , 225, 8	8	38
21	Observing gravitational-wave transient GW150914 with minimal assumptions. <i>Physical Review D</i> , 2016 , 93,	4.9	94
20	Tests of General Relativity with GW150914. <i>Physical Review Letters</i> , 2016 , 116, 221101	7.4	837
19	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102	7.4	515
18	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. <i>Physical Review Letters</i> , 2016 , 116, 241103	7.4	2136
17	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. <i>Physical Review X</i> , 2016 , 6,	9.1	723
16	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. <i>Astrophysical Journal Letters</i> , 2016 , 818, L22	7.9	512
15	Observation of Gravitational Waves from a Binary Black Hole Merger. <i>Physical Review Letters</i> , 2016 , 116, 061102	7.4	6108
14	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016 , 33,	3.3	155
13	SUPPLEMENT: THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914[[2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14	8	52
12	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. <i>Living Reviews in Relativity</i> , 2016 , 19, 1	32.5	393
11	Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. <i>Physical Review X</i> , 2016 , 6,	9.1	89
10	Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. <i>Physical Review D</i> , 2016 , 94,	4.9	29
9	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. <i>Astrophysical Journal Letters</i> , 2016 , 833, L1	7.9	209
8	Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. <i>Physical Review D</i> , 2015 , 91,	4.9	38

7	Advanced LIGO. Classical and Quantum Gravity, 2015, 32, 074001	3.3	1098
6	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. <i>Astrophysical Journal</i> , 2015 , 813, 39	4.7	58
5	Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. <i>Physical Review D</i> , 2015 , 91,	4.9	32
4	Gravitational Waveforms for Black Hole Binaries with Unequal Masses. <i>Springer Proceedings in Physics</i> , 2014 , 455-458	0.2	
3	Supermassive black hole mergers as dual sources for electromagnetic flares in the jet emission and gravitational waves. <i>Astronomische Nachrichten</i> , 2013 , 334, 1032-1035	0.7	1
2	Spin-dominated waveforms for unequal mass compact binaries. <i>Physical Review D</i> , 2012 , 86,	4.9	2
1	Compact binary waveform recovery from the cross-correlated data of two detectors by matched filtering with spinning templates. <i>Journal of Physics: Conference Series</i> , 2010 , 243, 012008	0.3	