
Nir Tessler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4959359/publications.pdf Version: 2024-02-01

NID TESSIED

#	Article	IF	CITATIONS
1	14ÂGHz Schottky Diodes Using a <i>p</i> â€Đoped Organic Polymer. Advanced Materials, 2022, 34, e2108524.	11.1	9
2	Illuminationâ€Driven Energy Level Realignment at Buried Interfaces between Organic Charge Transport Layers and a Lead Halide Perovskite. Solar Rrl, 2022, 6, .	3.1	8
3	Self-Aligned Double Injection-Function TFT for Deep Sub-Micrometer Channels' Length—Application to Solution-Processed Indium Gallium Zinc Oxide. IEEE Transactions on Electron Devices, 2022, 69, 555-560.	1.6	4
4	Light-induced trap emptying revealed by intensity-dependent quantum efficiency of organic solar cells. Journal of Applied Physics, 2022, 131, 135501.	1.1	5
5	Radiofrequency Schottky Diodes Based on p-Doped Copper(I) Thiocyanate (CuSCN). ACS Applied Materials & Interfaces, 2022, 14, 29993-29999.	4.0	3
6	Double injection function InGaZnO transistor—computational analysis of the patterned doping method. Applied Physics Letters, 2022, 120, .	1.5	5
7	InAs Nanocrystals with Robust pâ€Type Doping. Advanced Functional Materials, 2021, 31, 2007456.	7.8	17
8	Intraâ€Island Coulomb Correlations in PEDOT:PSS Thin Films; Saturation of Spin Polarization Magnetoresistance. Advanced Electronic Materials, 2021, 7, 2001033.	2.6	3
9	Doped Organic Hole Extraction Layers in Efficient PbS and AgBiS ₂ Quantum Dot Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 18750-18757.	4.0	16
10	Small grains as recombination hot spots in perovskite solar cells. Matter, 2021, 4, 1683-1701.	5.0	73
11	Spatial Distribution of Solar Cell Parameters in Multigrain Halide-Perovskite Films: A Device Model Perspective. ACS Applied Energy Materials, 2021, 4, 8709-8714.	2.5	3
12	Electron/hole blocking layers as ionic blocking layers in perovskite solar cells. Journal of Materials Chemistry C, 2021, 9, 1888-1894.	2.7	11
13	Hall Effect in Polycrystalline Organic Semiconductors: The Effect of Grain Boundaries. Advanced Functional Materials, 2020, 30, 1903617.	7.8	37
14	Translating local binding energy to a device effective one. Sustainable Energy and Fuels, 2020, 4, 760-771.	2.5	8
15	Enhancing the Open-Circuit Voltage of Perovskite Solar Cells by Embedding Molecular Dipoles within Their Hole-Blocking Layer. ACS Applied Materials & Interfaces, 2020, 12, 3572-3579.	4.0	30
16	Electronic-ionic coupling in perovskite based solar cells: Implications for device stability. Applied Physics Letters, 2020, 117, .	1.5	10
17	15% enhancement of the photocurrent at the maximum power point of a thin film solar cell. Sustainable Energy and Fuels, 2020, 4, 5618-5627.	2.5	6
18	Surface specificity and mechanistic pathway of de-fluorination of C ₆₀ F ₄₈ on coinage metals. Nanoscale Advances, 2020, 2, 4529-4538.	2.2	3

#	Article	IF	CITATIONS
19	Understanding Charge Transport in Highâ€Mobility <i>pâ€</i> Doped Multicomponent Blend Organic Transistors. Advanced Electronic Materials, 2020, 6, 2000539.	2.6	15
20	Effect of the Organic Semiconductor Side Groups on the Structural and Electronic Properties of Their Interface with Dopants. ACS Applied Materials & amp; Interfaces, 2020, 12, 57578-57586.	4.0	7
21	Double Beneficial Role of Fluorinated Fullerene Dopants on Organic Thin-Film Transistors: Structural Stability and Improved Performance. ACS Applied Materials & Interfaces, 2020, 12, 28416-28425.	4.0	13
22	Hybrid image sensor of small molecule organic photodiode on CMOS – Integration and characterization. Scientific Reports, 2020, 10, 7594.	1.6	23
23	Structure–Property Relation in Organic–Metal Oxide Hybrid Phototransistors. ACS Applied Materials & Interfaces, 2020, 12, 15430-15438.	4.0	8
24	Insights from Device Modeling of Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 1260-1270.	8.8	68
25	Dipolar hole-blocking layers for inverted perovskite solar cells: effects of aggregation and electron transport levels. JPhys Materials, 2020, 3, 025002.	1.8	8
26	Effects of fast back-fusion of charge transfer excimers on magneto-photocurrent in organic light emitting diodes. Journal of Chemical Physics, 2020, 152, 034707.	1.2	2
27	Contact engineering in vertical hybrid field effect transistor. , 2020, , .		1
28	Surface Versus Impurity-Doping Contributions in InAs Nanocrystal Field Effect Transistor Performance. Journal of Physical Chemistry C, 2019, 123, 18717-18725.	1.5	7
29	Enhancing the Openâ€Circuit Voltage of Perovskite Solar Cells by up to 120 mV Using ï€â€Extended Phosphoniumfluorene Electrolytes as Hole Blocking Layers. Advanced Energy Materials, 2019, 9, 1901257.	10.2	31
30	Vertical organic transistors. , 2019, , 759-783.		0
31	Nanoparticulate Metal Oxide Top Electrode Interface Modification Improves the Thermal Stability of Inverted Perovskite Photovoltaics. Nanomaterials, 2019, 9, 1616.	1.9	13
32	Doping induced performance enhancement in inverted small molecule organic photodiodes operating below 1V reverse bias - Towards compatibility with CMOS for imaging applications. Organic Electronics, 2019, 67, 1-9.	1.4	7
33	Preventing Hysteresis in Perovskite Solar Cells by Undoped Charge Blocking Layers. ACS Applied Energy Materials, 2018, 1, 676-683.	2.5	35
34	The Impact of Molecular pâ€Doping on Charge Transport in Highâ€Mobility Smallâ€Molecule/Polymer Blend Organic Transistors. Advanced Electronic Materials, 2018, 4, 1700464.	2.6	63
35	Effect of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>g</mml:mi> -factor anisotropy in the magnetoresponse of organic light-emitting diodes at high magnetic fields. Physical Review B. 2018. 98</mml:math 	1.1	7
36	Benchmarking the Electronic Processes at the Planar Organic Heterojunction Solar Cells. Journal of Physical Chemistry C, 2018, 122, 23271-23279.	1.5	6

#	Article	IF	CITATIONS
37	Assessment of the Factors Influencing Chargeâ€Carrier Mobility Measurements in Organic Fieldâ€Effect Transistors. Advanced Functional Materials, 2018, 28, 1803096.	7.8	26
38	pâ€Ðoping of Copper(I) Thiocyanate (CuSCN) Holeâ€Transport Layers for Highâ€Performance Transistors and Organic Solar Cells. Advanced Functional Materials, 2018, 28, 1802055.	7.8	50
39	Effect of Injection Layer Sub-Bandgap States on Electron Injection in Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2017, 9, 6220-6227.	4.0	25
40	Reaching saturation in patterned source vertical organic field effect transistors. Journal of Applied Physics, 2017, 121, .	1.1	31
41	Solution-processed 2-dimensional hole-doped ionic graphene compounds. Materials Horizons, 2017, 4, 456-463.	6.4	3
42	Low dark leakage current in organic planar heterojunction photodiodes. Applied Physics Letters, 2017, 111, .	1.5	50
43	Removing the current-limit of vertical organic field effect transistors. Journal of Applied Physics, 2017, 122, .	1.1	12
44	On electrode pinning and charge blocking layers in organic solar cells. Journal of Applied Physics, 2017, 121, 195502.	1.1	13
45	Charge blocking layers in thin-film/amorphous photovoltaics. Journal of Applied Physics, 2016, 120, 194502.	1.1	7
46	A Comprehensive study of the Effects of Chain Morphology on the Transport Properties of Amorphous Polymer Films. Scientific Reports, 2016, 6, 29092.	1.6	14
47	Hybrid complementary circuits based on <i>p</i> -channel organic and <i>n</i> -channel metal oxide transistors with balanced carrier mobilities of up to 10 cm2/Vs. Applied Physics Letters, 2016, 109, .	1.5	24
48	Complementary inverter from patterned source electrode vertical organic field effect transistors. Applied Physics Letters, 2016, 108, .	1.5	22
49	Organic-inorganic proximity effect in the magneto-conductance of vertical organic field effect transistors. Applied Physics Letters, 2016, 109, 033506.	1.5	3
50	The band-gap enhanced photovoltaic structure. Applied Physics Letters, 2016, 108, 183503.	1.5	7
51	Role of Contact Injection, Exciton Dissociation, and Recombination, Revealed through Voltage and Intensity Mapping of the Quantum Efficiency of Polymer:Fullerene Solar Cells. Journal of Physical Chemistry C, 2016, 120, 10146-10155.	1.5	11
52	Mixed Phases as a Route to Self-Passivation: Effect of π-Stacking Backbone on the Physical and Electrical Properties of Naphthalenediimide Derivatives. Journal of Physical Chemistry C, 2016, 120, 23221-23229.	1.5	4
53	Magnetophotocurrent in Organic Bulk Heterojunction Photovoltaic Cells at Low Temperatures and High Magnetic Fields. Physical Review Applied, 2016, 5, .	1.5	13
54	Small Molecule/Polymer Blend Organic Transistors with Hole Mobility Exceeding 13 cm ² V ^{â^'1} s ^{â^'1} . Advanced Materials, 2016, 28, 7791-7798.	11.1	166

#	Article	IF	CITATIONS
55	Thickness dependent charge transfer states and dark carriers density in vacuum deposited small molecule organic photocell. Journal of Applied Physics, 2016, 120, .	1.1	6
56	Research Update: Preserving the photoluminescence efficiency of near infrared emitting nanocrystals when embedded in a polymer matrix. APL Materials, 2016, 4, 040702.	2.2	4
57	Singleâ€Crystal Statistical Fieldâ€Effect Transistors. Advanced Electronic Materials, 2016, 2, 1500309.	2.6	4
58	Adding 0.2 V to the open circuit voltage of organic solar cells by enhancing the built-in potential. Journal of Applied Physics, 2015, 118, .	1.1	26
59	Schottky barrier height switching in thin metal oxide films studied in diode and solar cell device configurations. Journal of Applied Physics, 2015, 118, .	1.1	6
60	Accelerated weathering of carbonate rocks following the 2010 wildfire on Mount Carmel, Israel. International Journal of Wildland Fire, 2015, 24, 1154.	1.0	16
61	High field magneto-photocurrent in organic bulk hetero-junction photo-voltaic cells. Synthetic Metals, 2015, 208, 49-52.	2.1	3
62	Self-Assembled Metallic Nanowire-Based Vertical Organic Field-Effect Transistor. ACS Applied Materials & Interfaces, 2015, 7, 2149-2152.	4.0	58
63	Field dependent thermoelectric properties of organic semiconductors—A tool to determine the nature of charge transport in materials exhibiting thermally activated transport. Journal of Applied Physics, 2015, 117, 105502.	1.1	9
64	On the relevance of twoâ€dimensional models for radiation of statistical sources in stratified media. Radio Science, 2014, 49, 1008-1021.	0.8	1
65	Analytical estimation of emission zone mean position and width in organic light-emitting diodes from emission pattern image-source interference fringes. Journal of Applied Physics, 2014, 115, 223101.	1.1	5
66	Experimental techniques and the underlying device physics. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 1119-1152.	2.4	14
67	The Relation Between Molecular Packing or Morphology and Chemical Structure or Processing Conditions: the Effect on Electronic Properties. Advanced Functional Materials, 2014, 24, 2530-2536.	7.8	21
68	Role of Charge Transfer States in P3HT-Fullerene Solar Cells. Journal of Physical Chemistry C, 2014, 118, 27681-27689.	1.5	20
69	Thermoelectricity in Disordered Organic Semiconductors under the Premise of the Gaussian Disorder Model and Its Variants. Journal of Physical Chemistry Letters, 2014, 5, 3247-3253.	2.1	41
70	Short-lived charge-transfer excitons in organic photovoltaic cells studied by high-field magneto-photocurrent. Nature Communications, 2014, 5, 4529.	5.8	79
71	Coating and Enhanced Photocurrent of Vertically Aligned Zinc Oxide Nanowire Arrays with Metal Sulfide Materials. ACS Applied Materials & Interfaces, 2014, 6, 13594-13599.	4.0	16
72	The Mechanism of Operation of Lateral and Vertical Organic Field Effect Transistors. Israel Journal of Chemistry, 2014, 54, 568-585.	1.0	40

#	Article	IF	CITATIONS
73	Ray-optical theory of broadband partially coherent emission. Physical Review A, 2013, 87, .	1.0	2
74	The Topology of Hopping in the Energy Domain of Systems with Rapidly Decaying Density of States. Journal of Physical Chemistry C, 2013, 117, 24740-24745.	1.5	10
75	Exciton annihilation as bimolecular loss in organic solar cells. Journal of Applied Physics, 2013, 114, 154514.	1.1	28
76	Low-Temperature Molecular Vapor Deposition of Ultrathin Metal Oxide Dielectric for Low-Voltage Vertical Organic Field Effect Transistors. ACS Applied Materials & Interfaces, 2013, 5, 2462-2468.	4.0	29
77	Drift and Diffusion in Disordered Organic Semiconductors: The Role of Charge Density and Charge Energy Transport. Journal of Physical Chemistry C, 2013, 117, 3287-3293.	1.5	39
78	Fast switching characteristics in vertical organic field effect transistors. Applied Physics Letters, 2013, 103, 073502.	1.5	24
79	Curvature effects on optical emission of flexible organic light-emitting diodes. Optics Express, 2012, 20, 7929.	1.7	7
80	Solution-processed ambipolar vertical organic field effect transistor. Applied Physics Letters, 2012, 100, 263306.	1.5	45
81	Efficient ray-optical scheme for radiation of incoherent sources in flexible layered formations. , 2012, , .		0
82	Charge recombination in disordered neat polymer films under imbalanced excitation conditions studied using the recombination time of flight technique. Journal of Applied Physics, 2012, 111, 104510.	1.1	1
83	Combining Ligand-Induced Quantum-Confined Stark Effect with Type II Heterojunction Bilayer Structure in CdTe and CdSe Nanocrystal-Based Solar Cells. ACS Nano, 2012, 6, 3128-3133.	7.3	30
84	Unraveling the Physics of Vertical Organic Field Effect Transistors through Nanoscale Engineering of a Self-Assembled Transparent Electrode. Nano Letters, 2012, 12, 4729-4733.	4.5	74
85	Sequenceâ€Independent Synthesis of Ï€â€conjugated Arylenevinylene Oligomers using Bifunctional Thiophene Monomers. Advanced Functional Materials, 2012, 22, 1489-1501.	7.8	12
86	Investigation of C60F36 as low-volatility <i>p</i> -dopant in organic optoelectronic devices. Journal of Applied Physics, 2011, 109, .	1.1	55
87	Exciton formation as a rate limiting step for charge recombination in disordered organic molecules or polymers. Journal of Applied Physics, 2011, 109, 013701.	1.1	11
88	Controlling absorption enhancement in organic photovoltaic cells by patterning Au nano disks within the active layer. Optics Express, 2011, 19, A64.	1.7	60
89	Detection of Alkylating Agents using Electrical and Mechanical Means. Journal of Physics: Conference Series, 2011, 307, 012020.	0.3	2
90	Molecular control of quantum-dot internal electric field and its application to CdSe-based solar cells. Nature Materials, 2011, 10, 974-979.	13.3	84

#	Article	IF	CITATIONS
91	Harnessing "Clickâ€â€Type Chemistry for the Preparation of Novel Electronic Materials. Advanced Functional Materials, 2011, 21, 634-643.	7.8	10
92	Cyanoâ€Substituted Oligo(<i>p</i> â€phenylene vinylene) Single Crystals: A Promising Laser Material. Advanced Functional Materials, 2011, 21, 3770-3777.	7.8	98
93	Low cost, nanometer scale nanoimprinting – Application to organic solar cells optimization. Organic Electronics, 2011, 12, 1241-1246.	1.4	11
94	Patterned electrode vertical field effect transistor: Theory and experiment. Journal of Applied Physics, 2011, 110, .	1.1	61
95	Shockley–Read–Hall recombination in P3HT:PCBM solar cells as observed under ultralow light intensities. Journal of Applied Physics, 2011, 109, 064501.	1.1	58
96	Patterned electrode vertical OFET: analytical description, switching mechanisms, and optimization rules. Proceedings of SPIE, 2011, , .	0.8	12
97	The Impact of Spectral and Spatial Exciton Distributions on Optical Emission From Thin-Film Weak-Microcavity Organic Light-Emitting Diodes. IEEE Journal of Quantum Electronics, 2010, 46, 1388-1395.	1.0	11
98	Sensing of Alkylating Agents Using Organic Fieldâ€Effect Transistors. Advanced Functional Materials, 2010, 20, 105-110.	7.8	27
99	Interface Modifications of InAs Quantumâ€Đots Solids and their Effects on FET Performance. Advanced Functional Materials, 2010, 20, 1005-1010.	7.8	23
100	Towards an omnipotent "Artificial Nose― detection and identification of alkylating agents using an optical sensor array. Journal of Physical Organic Chemistry, 2010, 23, 1108-1113.	0.9	8
101	Analytical extraction of the recombination zone location in organic light-emitting diodes from emission pattern extrema. Optics Letters, 2010, 35, 3366.	1.7	12
102	Patterned electrode vertical field effect transistor fabricated using block copolymer nanotemplates. Applied Physics Letters, 2009, 95, .	1.5	78
103	Charge Transport in Disordered Organic Materials and Its Relevance to Thinâ€Film Devices: A Tutorial Review. Advanced Materials, 2009, 21, 2741-2761.	11.1	394
104	Ground tate Interaction and Electrical Doping of Fluorinated C ₆₀ in Conjugated Polymers. Advanced Materials, 2009, 21, 4456-4460.	11.1	41
105	Detection and Identification of Alkylating Agents by Using a Bioinspired "Chemical Nose― Chemistry - A European Journal, 2009, 15, 10380-10386.	1.7	33
106	Current voltage relation of amorphous materials based pn diodes—the effect of degeneracy in organic polymers/molecules. Journal of Applied Physics, 2009, 106, .	1.1	16
107	Photopatternable self-assembled monolayers as micron scale templates for polymer based field effect transistors. Applied Physics Letters, 2009, 94, .	1.5	10
108	Electromagnetic Radiation from Organic Light-emitting Diodes. Progress in Electromagnetics Research Symposium: [proceedings] Progress in Electromagnetics Research Symposium, 2009, 5, 75-80.	0.4	2

#	Article	IF	CITATIONS
109	Hybrid nanocomposite materials with organic and inorganic components for opto-electronic devices. Journal of Materials Chemistry, 2008, 18, 1064.	6.7	183
110	Tuning Energetic Levels in Nanocrystal Quantum Dots through Surface Manipulations. Nano Letters, 2008, 8, 678-684.	4.5	159
111	Optical emission from organic light-emitting diodes. , 2008, , .		0
112	p -type doping in organic light emitting diodes based on fluorinated C60. Journal of Applied Physics, 2008, 104, .	1.1	24
113	Measurements of the Einstein relation in doped and undoped molecular thin films. Physical Review B, 2008, 77, .	1.1	16
114	Wide band gap cross-linkable semiconducting polymer LED. Synthetic Metals, 2007, 157, 841-845.	2.1	17
115	Are organic LEDs and Lasers similar to inorganic devices?. , 2007, , .		1
116	Spatially dispersive transport: A mesoscopic phenomenon in disordered organic semiconductors. Physical Review B, 2007, 76, .	1.1	22
117	Photopatternability of poly(vinylcarbazole) bearing cinnamate pendants and its blends with a soluble poly(p-phenylene vinylene) derivative. Macromolecular Research, 2007, 15, 142-146.	1.0	8
118	Threshold voltage as a measure of molecular level shift in organic thin-film transistors. Applied Physics Letters, 2006, 88, 043509.	1.5	25
119	Loss of photocurrent efficiency in low mobility semiconductors: Analytic approach to space charge effects. Applied Physics Letters, 2006, 89, 013504.	1.5	14
120	Electronic Formulations—Photopatterning of Luminescent Conjugated Polymers. Advanced Functional Materials, 2006, 16, 2095-2102.	7.8	27
121	Low gain threshold of the cavity mode close to the cutoff wavelength in a three-slab asymmetric conjugated polymer-based waveguide structure. Journal of Applied Physics, 2006, 99, 013101.	1.1	20
122	Mobility spatial distribution function: Comparative method for conjugated polymers/molecules. Applied Physics Letters, 2006, 89, 252117.	1.5	12
123	Carrier heating in disordered organic semiconductors. Physical Review B, 2006, 74, .	1.1	36
124	The mobility spatial distribution function: Turn-on dynamics of polymer photocells. Journal of Applied Physics, 2006, 99, 064507.	1.1	27
125	Analysis and Modeling of Organic Devices. , 2006, , 319-341.		0
126	Amorphous organic molecule/polymer diodes and transistors—Comparison between predictions based on Gaussian or exponential density of states. Organic Electronics, 2005, 6, 200-210.	1.4	59

#	Article	IF	CITATIONS
127	1,3-Di(2-pyrrolyl)azulene: An Efficient Luminescent Probe for Fluoride. European Journal of Organic Chemistry, 2005, 2005, 2207-2212.	1.2	81
128	PbSe/PbS and PbSe/PbSexS1-x Core/Shell Nanocrystals. Advanced Functional Materials, 2005, 15, 1111-1116.	7.8	152
129	Charge carrier mobility in field effect transistors: analysis of capacitance–conductance measurements. Semiconductor Science and Technology, 2005, 20, 90-94.	1.0	8
130	The interplay between space charge and recombination in conjugated polymer/molecule photocells. Journal of Applied Physics, 2005, 98, 033714.	1.1	30
131	The use of electrical pulses to study the physics of bilayer organic light-emitting diodes. Journal of Applied Physics, 2005, 97, 014504.	1.1	14
132	Nanoscale Measurements of Electronic Properties in Organic Thin Film Transistors. Materials Research Society Symposia Proceedings, 2005, 871, 1.	0.1	0
133	Power Dependence and Turn-On Dynamics of Polymer Photocells - Extracting Mobilities and Analyzing Morphologies. Materials Research Society Symposia Proceedings, 2005, 871, 1.	0.1	0
134	Turn-on and Charge Build-up Dynamics in Polymer Field Effect Transistors. Materials Research Society Symposia Proceedings, 2005, 871, 1.	0.1	1
135	Optoelectronic properties of polymer-nanocrystal composites active at near-infrared wavelengths. Journal of Applied Physics, 2005, 98, 074310.	1.1	28
136	Direct Determination of the Hole Density of States in Undoped and Doped Amorphous Organic Films with High Lateral Resolution. Physical Review Letters, 2005, 95, 256405.	2.9	146
137	Excitation density dependence of photocurrent efficiency in low mobility semiconductors. Journal of Applied Physics, 2004, 96, 1083-1087.	1.1	29
138	Analysis and modeling of organic devices. Physica Status Solidi A, 2004, 201, 1246-1262.	1.7	78
139	Charge Density and Film Morphology Dependence of Charge Mobility in Polymer Field-Effect Transistors. Advanced Materials, 2003, 15, 913-916.	11.1	71
140	Charge transport in conjugated polymers The influence of charge concentration. Synthetic Metals, 2003, 135-136, 443-444.	2.1	45
141	NEAR INFRARED POLYMER NANOCRYSTAL LEDS. Synthetic Metals, 2003, 137, 1047-1048.	2.1	10
142	Self-consistent analysis of the contact phenomena in low-mobility semiconductors. Journal of Applied Physics, 2003, 93, 2059-2064.	1.1	35
143	Amorphous organic devicesÂdegenerate semiconductors. Journal of Physics Condensed Matter, 2002, 14, 9913-9924.	0.7	16
144	Generalized Einstein relation for disordered semiconductors—implications for device performance. Applied Physics Letters, 2002, 80, 1948-1950.	1.5	264

#	Article	IF	CITATIONS
145	Structures of polymer field-effect transistor: Experimental and numerical analyses. Applied Physics Letters, 2002, 80, 151-153.	1.5	70
146	Efficient Near-Infrared Polymer Nanocrystal Light-Emitting Diodes. Science, 2002, 295, 1506-1508.	6.0	1,296
147	Analysis of polymer-based devices. Synthetic Metals, 2001, 124, 41-43.	2.1	2
148	Light Emitting Diodes from Molecular and Polymer Semiconductors. , 2001, , 4486-4490.		1
149	Analysis of Polymer Field Effect Transistor. Materials Research Society Symposia Proceedings, 2001, 665, 1.	0.1	3
150	Semiconducting-polymer photonic devices. , 2001, , .		0
151	Optoelectronic devices based on hybrid organic–inorganic structures. Optical Materials, 2001, 17, 155-160.	1.7	5
152	Transfer Processes in Semiconducting Polymer-Porphyrin Blends. Advanced Materials, 2001, 13, 44-47.	11.1	105
153	Photoluminescence of poly(p-phenylenevinylene)–silica nanocomposites: Evidence for dual emission by Franck–Condon analysis. Journal of Chemical Physics, 2001, 115, 2709-2720.	1.2	89
154	Two-dimensional simulation of polymer field-effect transistor. Applied Physics Letters, 2001, 79, 2987-2989.	1.5	71
155	Laser Devices from Molecular and Polymer Semiconductors. , 2001, , 4402-4407.		0
156	Editorial: Semiconductor optoelectronics. IEE Proceedings: Optoelectronics, 2001, 148, 1-1.	0.8	0
157	Material and device related properties in the context of the possible making of electrically pumped polymer laser. Thin Solid Films, 2000, 363, 64-67.	0.8	23
158	Transport and optical modeling of organic light-emitting diodes. Applied Physics Letters, 2000, 77, 1897.	1.5	21
159	Polymer LEDs as a physics tool. Israel Journal of Chemistry, 2000, 40, 147-152.	1.0	2
160	Analysis of the turn-off dynamics in polymer light-emitting diodes. Applied Physics Letters, 2000, 76, 1137-1139.	1.5	42
161	Use of multiple electrical pulses to study charge transport in polymer light-emitting diodes. Applied Physics Letters, 2000, 77, 1493-1495.	1.5	7
162	Properties of light emitting organic materials within the context of future electrically pumped lasers. Synthetic Metals, 2000, 115, 57-62.	2.1	48

#	Article	IF	CITATIONS
163	Time-resolved transport in conjugated polymers. Synthetic Metals, 2000, 111-112, 257-261.	2.1	8
164	Semiconductor device model applied to electrically pulsed polymer LEDs. Synthetic Metals, 2000, 111-112, 269-272.	2.1	10
165	Electric Field Distribution in Polymer Light-Emitting Electrochemical Cells. Physical Review Letters, 2000, 85, 421-424.	2.9	67
166	High-mobility conjugated polymer field-effect transistors. , 1999, , 101-110.		46
167	Harvesting Singlet and Triplet Energy in Polymer LEDs. Advanced Materials, 1999, 11, 285-288.	11.1	347
168	Lasers Based on Semiconducting Organic Materials. Advanced Materials, 1999, 11, 363-370.	11.1	392
169	Transient electroluminescence of polymer light emitting diodes using electrical pulses. Journal of Applied Physics, 1999, 86, 5116-5130.	1.1	237
170	All-Polymer Optoelectronic Devices. Science, 1999, 285, 233-236.	6.0	286
171	Integrated, high-mobility polymer field-effect transistors driving polymer light-emitting diodes. Synthetic Metals, 1999, 102, 857-860.	2.1	163
172	Long lived photo- and electroluminescence from a side-chain polymer/porphyrin blend. Synthetic Metals, 1999, 102, 939-940.	2.1	7
173	Optical response of conjugated polymers excited at high intensity. Synthetic Metals, 1999, 102, 1008-1009.	2.1	34
174	Towards solution-processible semiconducting polymer-based photonic devices. Synthetic Metals, 1999, 102, 1020.	2.1	5
175	Moving the recombination zone in two layer polymer LEDs using high voltage pulses. Synthetic Metals, 1999, 102, 1108-1109.	2.1	13
176	Polymer leds as laser media ?. Synthetic Metals, 1999, 102, 1122-1123.	2.1	5
177	New method for colour patterning. Synthetic Metals, 1999, 102, 1124.	2.1	2
178	Pulsed excitation of low-mobility light-emitting diodes: Implication for organic lasers. Applied Physics Letters, 1999, 74, 2764-2766.	1.5	52
179	Energy and Charge Transfer in Electroluminescent Polymer/Porphyrin Blends. Materials Research Society Symposia Proceedings, 1999, 558, 325.	0.1	2
180	Energy and Charge Transfer in Electroluminescent Polymer/Porphyrin Blends. Materials Research Society Symposia Proceedings, 1999, 560, 303.	0.1	2

#	Article	IF	CITATIONS
181	Time-Resolved Transport of Electrons and Holes in Conjugated Polymers. Materials Research Society Symposia Proceedings, 1999, 561, 143.	0.1	0
182	Ionic space-charge effects in polymer light-emitting diodes. Physical Review B, 1998, 57, 12951-12963.	1.1	326
183	High Peak Brightness Polymer Light-Emitting Diodes. Advanced Materials, 1998, 10, 64-68.	11.1	178
184	High finesse organic microcavities. Optical Materials, 1998, 9, 18-24.	1.7	23
185	Peak current density and brightness from poly(p-phenylenevinylene) based light-emitting diodes. Optical Materials, 1998, 9, 178-182.	1.7	12
186	Integrated Optoelectronic Devices Based on Conjugated Polymers. Science, 1998, 280, 1741-1744.	6.0	2,627
187	Current heating in polymer light emitting diodes. Applied Physics Letters, 1998, 73, 732-734.	1.5	99
188	Factors Influencing Stimulated Emission from Poly(p-phenylenevinylene). Physical Review Letters, 1997, 78, 733-736.	2.9	121
189	Suppressed angular color dispersion in planar microcavities. Applied Physics Letters, 1997, 70, 556-558.	1.5	56
190	Stimulated emission, lasing, and line narrowing in conjugated polymers. , 1997, , .		2
191	Optically and Electrically Excited Semiconducting polymer Structures. Materials Research Society Symposia Proceedings, 1997, 488, 3.	0.1	0
192	Role of optical properties of metallic mirrors in microcavity structures. Journal of Applied Physics, 1997, 81, 2825-2829.	1.1	90
193	Modification of modal gain in InGaAs-GaAs quantum-well lasers due to barrier-state carriers. IEEE Journal of Selected Topics in Quantum Electronics, 1997, 3, 142-147.	1.9	5
194	Vertical carrier transport in InGaAsP multiple-quantum-well laser structures: effect of p-doping. IEEE Journal of Selected Topics in Quantum Electronics, 1997, 3, 315-319.	1.9	10
195	lonic space-charge assisted current injection in organic light emitting diodes. Synthetic Metals, 1997, 85, 1277-1278.	2.1	25
196	Electronic Processes of Conjugated Polymers in Semiconductor Device Structures. Synthetic Metals, 1997, 84, 463-470.	2.1	52
197	Lasing characteristics of PPV microcavities. Synthetic Metals, 1997, 84, 475-476.	2.1	58
198	High excitation density in light-emitting polymers. Synthetic Metals, 1997, 91, 61-64.	2.1	7

#	Article	IF	CITATIONS
199	Electronic excitations in luminescent conjugated polymers. Solid State Communications, 1997, 102, 249-258.	0.9	69
200	Spectral narrowing in optically pumped poly (p-phenylenevinylene) Films. Advanced Materials, 1997, 9, 547-551.	11.1	116
201	Lasing from conjugated-polymer microcavities. Nature, 1996, 382, 695-697.	13.7	1,316
202	Dynamics of barrier state electron selfâ€localization in InGaAs/InGaAsP multiple quantum well lasers. Applied Physics Letters, 1996, 68, 2486-2488.	1.5	1
203	Carrier Transport in Multiple Quantum Well Region of InGaAsP/InP Structures. , 1996, , 229-232.		0
204	Wide-band amplitude modulation by electrooptic tuning of the center wavelength in short-cavity distributed Bragg reflector lasers. IEEE Journal of Selected Topics in Quantum Electronics, 1995, 1, 490-493.	1.9	4
205	Lasing transitions between self-localized barrier-state electrons and confined-state heavy holes in InGaAs-InGaAsP-InP multiple-quantum-well lasers. IEEE Journal of Quantum Electronics, 1995, 31, 1935-1940.	1.0	4
206	Gain dynamics in quantum well lasers and optical amplifiers: An experimental comparison. Applied Physics Letters, 1994, 64, 2050-2052.	1.5	6
207	Short cavity distributed Bragg reflection lasers with a narrow band Bragg mirror: Dynamic characteristics. Applied Physics Letters, 1994, 65, 3048-3050.	1.5	1
208	Modelling carrier dynamics and small-signal modulation response in quantum-well lasers. Optical and Quantum Electronics, 1994, 26, S767-S787.	1.5	21
209	Temperature dependent loss and overflow effects in quantum well lasers. IEEE Photonics Technology Letters, 1994, 6, 1293-1296.	1.3	27
210	Analysis of pump probe measurements and carrier overflow effects in multiple quantum-well optical amplifiers. IEEE Journal of Quantum Electronics, 1994, 30, 2767-2770.	1.0	2
211	Broadband femtosecond pumpâ€probe setup operating at 1300 and 1550 nm. Applied Physics Letters, 1994, 64, 1899-1901.	1.5	8
212	Bistability and optical control of a distributed-Bragg-reflector laser. Optics Letters, 1993, 18, 610.	1.7	8
213	On carrier injection and gain dynamics in quantum well lasers. IEEE Journal of Quantum Electronics, 1993, 29, 1586-1595.	1.0	148
214	Transient carrier dynamics and photon-assisted transport in multiple-quantum-well lasers. IEEE Photonics Technology Letters, 1993, 5, 291-293.	1.3	15
215	Distributed nature of quantumâ€well lasers. Applied Physics Letters, 1993, 62, 10-12.	1.5	60
216	Measurements of the barrierâ€well injection bottleneck in a multiple quantum well optical amplifier. Applied Physics Letters, 1992, 60, 1788-1790.	1.5	17

#	Article	IF	CITATIONS
217	Nonequilibrium effects in quantum well lasers. Applied Physics Letters, 1992, 61, 2383-2385.	1.5	23
218	Coupling between barrier and quantum well energy states in a multiple quantum well optical amplifier. Applied Physics Letters, 1992, 60, 665-667.	1.5	42
219	Structure dependent modulation responses in quantum-well lasers. IEEE Journal of Quantum Electronics, 1992, 28, 2242-2250.	1.0	64
220	Characteristics of distributed Bragg reflector active optical filters. IEEE Photonics Technology Letters, 1991, 3, 336-338.	1.3	3
221	Distributed Bragg reflector active optical filters. IEEE Journal of Quantum Electronics, 1991, 27, 2016-2024.	1.0	20
222	Frequency-modulation mode locking of a semiconductor laser. Optics Letters, 1991, 16, 1750.	1.7	8
223	Length dependence of the saturation characteristics in 1.5- mu m multiple quantum well optical amplifiers. IEEE Photonics Technology Letters, 1990, 2, 790-791.	1.3	23
224	Non equilibrium effects in quantum well lasers. , 0, , .		0
225	Transient carrier responses in multiple quantum well lasers. , 0, , .		2
226	Modulation characteristics of short cavity distributed Bragg reflection lasers with a narrow band Bragg mirror. , 0, , .		0
227	Temperature and output power dependence of carrier overflow and internal loss in InGaAs/InGaAsP multiple quantum well lasers. , 0, , .		1
228	Modal gain reduction due to barrier state carriers in quantum well lasers. , 0, , .		0
229	Detection of Alkylating Agents Using Optical, Electrical and Mechanical Means. , 0, , .		0
230	Direct evidence for self localization of barrier state electrons in 1500 nm MQW lasers. , 0, , .		0