

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/495907/publications.pdf Version: 2024-02-01

Διτλοίι

#	Article	IF	CITATIONS
1	Bioorthogonal catalytic nanozyme-mediated lysosomal membrane leakage for targeted drug delivery. Theranostics, 2022, 12, 1132-1147.	4.6	24
2	Molecular Basis for a Toluene Monooxygenase to Govern Substrate Selectivity. ACS Catalysis, 2022, 12, 2831-2839.	5.5	11
3	A Chemoenzymatic Strategy for the Synthesis of Steroid Drugs Enabled by P450 Monooxygenase-Mediated Steroidal Core Modification. ACS Catalysis, 2022, 12, 2907-2914.	5.5	33
4	Recent advances in the sustainable production of α,ω-C6 bifunctional compounds enabled by chemo-/biocatalysts. Green Chemistry, 2022, 24, 4270-4303.	4.6	13
5	Exploring the Potential of Cytochrome P450 CYP109B1 Catalyzed Regio—and Stereoselective Steroid Hydroxylation. Frontiers in Chemistry, 2021, 9, 649000.	1.8	10
6	Pervasive cooperative mutational effects on multiple catalytic enzyme traits emerge via long-range conformational dynamics. Nature Communications, 2021, 12, 1621.	5.8	72
7	PfAgo-based detection of SARS-CoV-2. Biosensors and Bioelectronics, 2021, 177, 112932.	5.3	66
8	Active-site engineering of ω-transaminase from Ochrobactrum anthropi for preparation of L-2-aminobutyric acid. BMC Biotechnology, 2021, 21, 55.	1.7	5
9	Wastewater-powered high-value chemical synthesis in a hybrid bioelectrochemical system. IScience, 2021, 24, 103401.	1.9	7
10	Die zentrale Rolle der Methodenentwicklung in der gerichteten Evolution selektiver Enzyme. Angewandte Chemie, 2020, 132, 13304-13333.	1.6	42
11	The Crucial Role of Methodology Development in Directed Evolution of Selective Enzymes. Angewandte Chemie - International Edition, 2020, 59, 13204-13231.	7.2	278
12	Bacterial cytochrome P450-catalyzed regio- and stereoselective steroid hydroxylation enabled by directed evolution and rational design. Bioresources and Bioprocessing, 2020, 7, .	2.0	60
13	One-pot biocatalytic route from cycloalkanes to α,ωâ€dicarboxylic acids by designed Escherichia coli consortia. Nature Communications, 2020, 11, 5035.	5.8	60
14	Biosynthesis of organic molecules via artificial cascade reactions based on cytochrome P450 monooxygenases. Green Synthesis and Catalysis, 2020, 1, 52-59.	3.7	27
15	One-pot biosynthesis of 1,6-hexanediol from cyclohexane by <i>de novo</i> designed cascade biocatalysis. Green Chemistry, 2020, 22, 7476-7483.	4.6	30
16	Reductive Amination of Biobased Levulinic Acid to Unnatural Chiral γ-Amino Acid Using an Engineered Amine Dehydrogenase. ACS Sustainable Chemistry and Engineering, 2020, 8, 17054-17061.	3.2	24
17	A single digestion, single-stranded oligonucleotide mediated PCR-independent site-directed mutagenesis method. Applied Microbiology and Biotechnology, 2020, 104, 3993-4003.	1.7	5
18	Regio―and Stereoselective Steroid Hydroxylation at C7 by Cytochromeâ€P450 Monooxygenase Mutants. Angewandte Chemie - International Edition, 2020, 59, 12499-12505.	7.2	83

Αιτάο Li

#	Article	IF	CITATIONS
19	Regio―and Stereoselective Steroid Hydroxylation at C7 by Cytochromeâ€P450 Monooxygenase Mutants. Angewandte Chemie, 2020, 132, 12599-12605.	1.6	19
20	Statistical Analysis of the Benefits of Focused Saturation Mutagenesis in Directed Evolution Based on Reduced Amino Acid Alphabets. ACS Catalysis, 2019, 9, 7769-7778.	5.5	40
21	Engineering an Alcohol Dehydrogenase for Balancing Kinetics in NADPH Regeneration with 1,4-Butanediol as a Cosubstrate. ACS Sustainable Chemistry and Engineering, 2019, 7, 15706-15714.	3.2	7
22	Chemical and Biocatalytic Routes to Arbutin â€. Molecules, 2019, 24, 3303.	1.7	26
23	<i>Pyrococcus furiosus</i> Argonaute-mediated nucleic acid detection. Chemical Communications, 2019, 55, 13219-13222.	2.2	76
24	Chemo―and Regioselective Dihydroxylation of Benzene to Hydroquinone Enabled by Engineered Cytochromeâ€P450 Monooxygenase. Angewandte Chemie, 2019, 131, 774-778.	1.6	22
25	Chemo―and Regioselective Dihydroxylation of Benzene to Hydroquinone Enabled by Engineered Cytochromeâ€P450 Monooxygenase. Angewandte Chemie - International Edition, 2019, 58, 764-768.	7.2	62
26	P450-Catalyzed Regio- and Diastereoselective Steroid Hydroxylation: Efficient Directed Evolution Enabled by Mutability Landscaping. ACS Catalysis, 2018, 8, 3395-3410.	5.5	128
27	Bioamination of alkane with ammonium by an artificially designed multienzyme cascade. Metabolic Engineering, 2018, 47, 184-189.	3.6	35
28	Beating Bias in the Directed Evolution of Proteins: Combining Highâ€Fidelity onâ€Chip Solidâ€Phase Gene Synthesis with Efficient Gene Assembly for Combinatorial Library Construction. ChemBioChem, 2018, 19, 221-228.	1.3	39
29	Chemo―and Regioselective Dihydroxylation of Benzene to Hydroquinone Enabled by Engineered Cytochromeâ€P450 Monooxygenase. Angewandte Chemie, 2018, 131, 930.	1.6	0
30	Boosting the efficiency of site-saturation mutagenesis for a difficult-to-randomize gene by a two-step PCR strategy. Applied Microbiology and Biotechnology, 2018, 102, 6095-6103.	1.7	30
31	Engineering P450 _{LaMO} stereospecificity and product selectivity for selective C–H oxidation of tetralin-like alkylbenzenes. Catalysis Science and Technology, 2018, 8, 4638-4644.	2.1	17
32	Solidâ€Phase Gene Synthesis for Mutant Library Construction: The Future of Directed Evolution?. ChemBioChem, 2018, 19, 2023-2032.	1.3	24
33	Rapid and Error-Free Site-Directed Mutagenesis by a PCR-Free <i>In Vitro</i> CRISPR/Cas9-Mediated Mutagenic System. ACS Synthetic Biology, 2018, 7, 2236-2244.	1.9	25
34	Hinge-Type Dimerization of Proteins by a Tetracysteine Peptide of High Pairing Specificity. Biochemistry, 2018, 57, 3658-3664.	1.2	18
35	A redox-mediated Kemp eliminase. Nature Communications, 2017, 8, 14876.	5.8	44
36	Preparation of Structurally Diverse Chiral Alcohols by Engineering Ketoreductase <i>Cg</i> KR1. ACS Catalysis, 2017, 7, 7174-7181.	5.5	74

Αιτάο Li

#	Article	IF	CITATIONS
37	One-pot conversion of biomass-derived xylose to furfuralcohol by a chemo-enzymatic sequential acid-catalyzed dehydration and bioreduction. Green Chemistry, 2017, 19, 3844-3850.	4.6	72
38	Whole-Cell-Catalyzed Multiple Regio- and Stereoselective Functionalizations in Cascade Reactions Enabled by Directed Evolution. Angewandte Chemie, 2016, 128, 12205-12208.	1.6	33
39	Whole ell atalyzed Multiple Regio―and Stereoselective Functionalizations in Cascade Reactions Enabled by Directed Evolution. Angewandte Chemie - International Edition, 2016, 55, 12026-12029.	7.2	79
40	Structure-Guided Triple-Code Saturation Mutagenesis: Efficient Tuning of the Stereoselectivity of an Epoxide Hydrolase. ACS Catalysis, 2016, 6, 1590-1597.	5.5	110
41	Analysis of Enantioselective Biotransformations Using a Few Hundred Cells on an Integrated Microfluidic Chip. Journal of the American Chemical Society, 2016, 138, 2102-2105.	6.6	28
42	Temperature-responsive nanobiocatalysts with an upper critical solution temperature for high performance biotransformation and easy catalyst recycling: efficient hydrolysis of cellulose to glucose. Green Chemistry, 2015, 17, 1194-1203.	4.6	44
43	Integrating interfacial self-assembly and electrostatic complexation at an aqueous interface for capsule synthesis and enzyme immobilization. Journal of Materials Chemistry A, 2014, 2, 1672-1676.	5.2	34
44	Asymmetric epoxidation of alkenes and benzylic hydroxylation with P450tol monooxygenase from Rhodococcus coprophilus TC-2. Chemical Communications, 2014, 50, 8771.	2.2	49
45	Engineered P450pyr monooxygenase for asymmetric epoxidation of alkenes with unique and high enantioselectivity. Chemical Communications, 2013, 49, 11572.	2.2	47
46	Enantioselective Hydrolysis of Racemic and <i>Meso</i> -Epoxides with Recombinant <i>Escherichia coli</i> Expressing Epoxide Hydrolase from <i>Sphingomonas</i> sp. HXN-200: Preparation of Epoxides and Vicinal Diols in High <i>ee</i> and High Concentration. ACS Catalysis, 2013, 3, 752-759.	5.5	69
47	Whole-cell based solvent-free system for one-pot production of biodiesel from waste grease. Bioresource Technology, 2012, 114, 725-729.	4.8	48
48	Asymmetric trans-dihydroxylation of cyclic olefins by enzymatic or chemo-enzymatic sequential epoxidation and hydrolysis in one-pot. Green Chemistry, 2011, 13, 2452.	4.6	23