List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4958423/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A ceRNA Hypothesis: The Rosetta Stone of a Hidden RNA Language?. Cell, 2011, 146, 353-358.	28.9	5,954
2	The multilayered complexity of ceRNA crosstalk and competition. Nature, 2014, 505, 344-352.	27.8	3,223
3	A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature, 2010, 465, 1033-1038.	27.8	2,133
4	Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature, 2005, 436, 725-730.	27.8	1,768
5	The functions and regulation of the PTEN tumour suppressor. Nature Reviews Molecular Cell Biology, 2012, 13, 283-296.	37.0	1,638
6	The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature, 1999, 402, 309-313.	27.8	1,619
7	Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nature Genetics, 1998, 19, 56-59.	21.4	1,361
8	Complete Remission after Treatment of Acute Promyelocytic Leukemia with Arsenic Trioxide. New England Journal of Medicine, 1998, 339, 1341-1348.	27.0	1,149
9	Phosphorylation and Functional Inactivation of TSC2 by Erk. Cell, 2005, 121, 179-193.	28.9	1,132
10	Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. Journal of Clinical Investigation, 2008, 118, 3065-74.	8.2	1,132
11	The Multiple Roles of PTEN in Tumor Suppression. Cell, 2000, 100, 387-390.	28.9	1,064
12	Cancer metabolism: fatty acid oxidation in the limelight. Nature Reviews Cancer, 2013, 13, 227-232.	28.4	969
13	Tenets of PTEN Tumor Suppression. Cell, 2008, 133, 403-414.	28.9	951
14	Coding-Independent Regulation of the Tumor Suppressor PTEN by Competing Endogenous mRNAs. Cell, 2011, 147, 344-357.	28.9	926
15	Essential Role for Nuclear PTEN in Maintaining Chromosomal Integrity. Cell, 2007, 128, 157-170.	28.9	879
16	Does the ribosome translate cancer?. Nature Reviews Cancer, 2003, 3, 179-192.	28.4	853
17	Essential role of Plzf in maintenance of spermatogonial stem cells. Nature Genetics, 2004, 36, 653-659.	21.4	852
18	Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nature Reviews Molecular Cell Biology, 2007, 8, 1006-1016.	37.0	813

#	Article	IF	CITATIONS
19	PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature, 2000, 406, 207-210.	27.8	761
20	ceRNA Cross-Talk in Cancer: When ce-bling Rivalries Go Awry. Cancer Discovery, 2013, 3, 1113-1121.	9.4	750
21	Nucleophosmin and cancer. Nature Reviews Cancer, 2006, 6, 493-505.	28.4	734
22	SIRT3 Opposes Reprogramming of Cancer Cell Metabolism through HIF1α Destabilization. Cancer Cell, 2011, 19, 416-428.	16.8	690
23	Ubiquitination Regulates PTEN Nuclear Import and Tumor Suppression. Cell, 2007, 128, 141-156.	28.9	652
24	NEDD4-1 Is a Proto-Oncogenic Ubiquitin Ligase for PTEN. Cell, 2007, 128, 129-139.	28.9	630
25	A PML–PPAR-Î′ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nature Medicine, 2012, 18, 1350-1358.	30.7	612
26	InÂVivo Identification of Tumor- Suppressive PTEN ceRNAs in an Oncogenic BRAF-Induced Mouse Model of Melanoma. Cell, 2011, 147, 382-395.	28.9	602
27	Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nature Genetics, 2009, 41, 619-624.	21.4	595
28	Pten Dose Dictates Cancer Progression in the Prostate. PLoS Biology, 2003, 1, e59.	5.6	593
29	Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. Journal of Clinical Investigation, 2009, 119, 1359-1372.	8.2	585
30	Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nature Genetics, 1995, 11, 40-44.	21.4	576
31	Oncogenic Role of Fusion-circRNAs Derived from Cancer-Associated Chromosomal Translocations. Cell, 2016, 165, 289-302.	28.9	567
32	Distinct interactions of PML-RARα and PLZF-RARα with co-repressors determine differential responses to RA in APL. Nature Genetics, 1998, 18, 126-135.	21.4	566
33	The functions and regulation of the PTEN tumour suppressor: new modes and prospects. Nature Reviews Molecular Cell Biology, 2018, 19, 547-562.	37.0	566
34	The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nature Medicine, 2004, 10, 484-486.	30.7	536
35	PML targeting eradicates quiescent leukaemia-initiating cells. Nature, 2008, 453, 1072-1078.	27.8	517
36	The Role of PML in Tumor Suppression. Cell, 2002, 108, 165-170.	28.9	515

#	Article	IF	CITATIONS
37	The transcriptional role of PML and the nuclear body. Nature Cell Biology, 2000, 2, E85-E90.	10.3	513
38	Role of nucleophosmin in embryonic development and tumorigenesis. Nature, 2005, 437, 147-153.	27.8	513
39	Pml is essential for multiple apoptotic pathways. Nature Genetics, 1998, 20, 266-272.	21.4	507
40	Subtle variations in Pten dose determine cancer susceptibility. Nature Genetics, 2010, 42, 454-458.	21.4	506
41	Single-Cell Genomics Unveils Critical Regulators of Th17 Cell Pathogenicity. Cell, 2015, 163, 1400-1412.	28.9	504
42	The BTB–zinc finger transcriptional regulator PLZF controls the development of invariant natural killer T cell effector functions. Nature Immunology, 2008, 9, 1055-1064.	14.5	503
43	mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature, 2017, 541, 228-232.	27.8	503
44	Role of SUMO-1–modified PML in nuclear body formation. Blood, 2000, 95, 2748-2752.	1.4	493
45	Impaired Fas Response and Autoimmunity in Pten+/ Mice. Science, 1999, 285, 2122-2125.	12.6	490
46	Role of PML in Cell Growth and the Retinoic Acid Pathway. Science, 1998, 279, 1547-1551.	12.6	488
47	The deubiquitinylation and localization of PTEN are regulated by a HAUSP–PML network. Nature, 2008, 455, 813-817.	27.8	466
48	Role of Promyelocytic Leukemia (Pml) Sumolation in Nuclear Body Formation, 11s Proteasome Recruitment, and as2O3-Induced Pml or Pml/Retinoic Acid Receptor α Degradation. Journal of Experimental Medicine, 2001, 193, 1361-1372.	8.5	462
49	Role of the proto-oncogene Pokemon in cellular transformation and ARF repression. Nature, 2005, 433, 278-285.	27.8	461
50	The SUMO Pathway Is Essential for Nuclear Integrity and Chromosome Segregation in Mice. Developmental Cell, 2005, 9, 769-779.	7.0	456
51	The Mechanisms of PML-Nuclear Body Formation. Molecular Cell, 2006, 24, 331-339.	9.7	455
52	elF4E phosphorylation promotes tumorigenesis and is associated with prostate cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14134-14139.	7.1	447
53	The function of PML in p53-dependent apoptosis. Nature Cell Biology, 2000, 2, 730-736.	10.3	432
54	A continuum model for tumour suppression. Nature, 2011, 476, 163-169.	27.8	432

#	Article	IF	CITATIONS
55	Generation of functional multipotent adult stem cells from GPR125+ germline progenitors. Nature, 2007, 449, 346-350.	27.8	430
56	A murine lung cancer co-clinical trial identifies genetic modifiers of therapeutic response. Nature, 2012, 483, 613-617.	27.8	430
57	MicroRNA-Antagonism Regulates Breast Cancer Stemness and Metastasis via TET-Family-Dependent Chromatin Remodeling. Cell, 2013, 154, 311-324.	28.9	417
58	High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood, 2009, 114, 647-650.	1.4	414
59	PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes and Development, 2008, 22, 436-448.	5.9	413
60	Evidence that Inositol Polyphosphate 4-Phosphatase Type II Is a Tumor Suppressor that Inhibits PI3K Signaling. Cancer Cell, 2009, 16, 115-125.	16.8	411
61	Targeting Lactate Dehydrogenase-A Inhibits Tumorigenesis and Tumor Progression in Mouse Models of Lung Cancer and Impacts Tumor-Initiating Cells. Cell Metabolism, 2014, 19, 795-809.	16.2	411
62	Pro-senescence therapy for cancer treatment. Nature Reviews Cancer, 2011, 11, 503-511.	28.4	400
63	Identification of the <i>miR-106b</i> ~ <i>25</i> MicroRNA Cluster as a Proto-Oncogenic <i>PTEN</i> -Targeting Intron That Cooperates with Its Host Gene <i>MCM7</i> in Transformation. Science Signaling, 2010, 3, ra29.	3.6	390
64	Targeted Disruption of CDK4 Delays Cell Cycle Entry with Enhanced p27 ^{Kip1} Activity. Molecular and Cellular Biology, 1999, 19, 7011-7019.	2.3	388
65	Bethesda proposals for classification of nonlymphoid hematopoietic neoplasms in mice. Blood, 2002, 100, 238-245.	1.4	387
66	Dyskeratosis Congenita and Cancer in Mice Deficient in Ribosomal RNA Modification. Science, 2003, 299, 259-262.	12.6	387
67	Combining a PI3K Inhibitor with a PARP Inhibitor Provides an Effective Therapy for BRCA1-Related Breast Cancer. Cancer Discovery, 2012, 2, 1048-1063.	9.4	384
68	Identification of a tumour suppressor network opposing nuclear Akt function. Nature, 2006, 441, 523-527.	27.8	362
69	PML Regulates Apoptosis at Endoplasmic Reticulum by Modulating Calcium Release. Science, 2010, 330, 1247-1251.	12.6	360
70	Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature, 2010, 464, 374-379.	27.8	357
71	PML inhibits HIF-11 \pm translation and neoangiogenesis through repression of mTOR. Nature, 2006, 442, 779-785.	27.8	354
72	Systemic Elevation of PTEN Induces a Tumor-Suppressive Metabolic State. Cell, 2012, 149, 49-62.	28.9	339

#	Article	IF	CITATIONS
73	Nuclear PTEN Regulates the APC-CDH1 Tumor-Suppressive Complex inÂa Phosphatase-Independent Manner. Cell, 2011, 144, 187-199.	28.9	333
74	Eradication of acute promyelocytic leukemia-initiating cells through PML-RARA degradation. Nature Medicine, 2008, 14, 1333-1342.	30.7	325
75	Enhancing Chemotherapy Efficacy in Pten -Deficient Prostate Tumors by Activating the Senescence-Associated Antitumor Immunity. Cell Reports, 2014, 9, 75-89.	6.4	313
76	Loss of the Tumor Suppressor PML in Human Cancers of Multiple Histologic Origins. Journal of the National Cancer Institute, 2004, 96, 269-279.	6.3	304
77	Integrated transcriptional and competitive endogenous RNA networks are cross-regulated in permissive molecular environments. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7154-7159.	7.1	303
78	Absence of nucleolar disruption after impairment of 40S ribosome biogenesis reveals an rpL11-translation-dependent mechanism of p53 induction. Nature Cell Biology, 2009, 11, 501-508.	10.3	301
79	PML regulates p53 stability by sequestering Mdm2 to the nucleolus. Nature Cell Biology, 2004, 6, 665-672.	10.3	298
80	PML Is a Direct p53 Target that Modulates p53 Effector Functions. Molecular Cell, 2004, 13, 523-535.	9.7	295
81	Carbon Monoxide Expedites Metabolic Exhaustion to Inhibit Tumor Growth. Cancer Research, 2013, 73, 7009-7021.	0.9	295
82	The BRAF Pseudogene Functions as a Competitive Endogenous RNA and Induces Lymphoma InÂVivo. Cell, 2015, 161, 319-332.	28.9	293
83	Cytoplasmic PML function in TGF-Î ² signalling. Nature, 2004, 431, 205-211.	27.8	291
84	A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. Journal of Clinical Investigation, 2010, 120, 681-693.	8.2	290
85	The Oncogenic MicroRNA miR-22 Targets the TET2 Tumor Suppressor to Promote Hematopoietic Stem Cell Self-Renewal and Transformation. Cell Stem Cell, 2013, 13, 87-101.	11.1	288
86	A Novel Signal Transduction Cascade Involving Direct Physical Interaction of the Renin/Prorenin Receptor With the Transcription Factor Promyelocytic Zinc Finger Protein. Circulation Research, 2006, 99, 1355-1366.	4.5	287
87	Cell-cycle-regulated activation of Akt kinase by phosphorylation at its carboxyl terminus. Nature, 2014, 508, 541-545.	27.8	285
88	The AKT-mTOR pathway plays a critical role in the development of leiomyosarcomas. Nature Medicine, 2007, 13, 748-753.	30.7	275
89	A CK2-Dependent Mechanism for Degradation of the PML Tumor Suppressor. Cell, 2006, 126, 269-283.	28.9	271
90	Plzf regulates limb and axial skeletal patterning. Nature Genetics, 2000, 25, 166-172.	21.4	269

#	Article	IF	CITATIONS
91	Activation of Akt/Protein Kinase B Overcomes a G ₂ /M Cell Cycle Checkpoint Induced by DNA Damage. Molecular and Cellular Biology, 2002, 22, 7831-7841.	2.3	263
92	p53 at the endoplasmic reticulum regulates apoptosis in a Ca ²⁺ -dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1779-1784.	7.1	247
93	TCR-inducible PLZF transcription factor required for innate phenotype of a subset of γÎ′ T cells with restricted TCR diversity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12453-12458.	7.1	242
94	An Integrated Genome-wide CRISPRa Approach to Functionalize IncRNAs in Drug Resistance. Cell, 2018, 173, 649-664.e20.	28.9	238
95	Plzf Regulates Germline Progenitor Self-Renewal by Opposing mTORC1. Cell, 2010, 142, 468-479.	28.9	237
96	Histone deacetylase inhibitors induce remission in transgenic models of therapy-resistant acute promyelocytic leukemia. Journal of Clinical Investigation, 2001, 108, 1321-1330.	8.2	237
97	Cancer-Associated PTEN Mutants Act in a Dominant-Negative Manner to Suppress PTEN Protein Function. Cell, 2014, 157, 595-610.	28.9	235
98	The deficiency of Akt1 is sufficient to suppress tumor development in Pten+/- mice. Genes and Development, 2006, 20, 1569-1574.	5.9	229
99	An aberrant SREBP-dependent lipogenic program promotes metastatic prostate cancer. Nature Genetics, 2018, 50, 206-218.	21.4	229
100	PTEN Level in Tumor Suppression: How Much Is Too Little?. Cancer Research, 2011, 71, 629-633.	0.9	222
101	Active Pin1 is a key target of all-trans retinoic acid in acute promyelocytic leukemia and breast cancer. Nature Medicine, 2015, 21, 457-466.	30.7	220
102	Acute Promyelocytic Leukemia: A Paradigm for Oncoprotein-Targeted Cure. Cancer Cell, 2017, 32, 552-560.	16.8	219
103	A role for PML and the nuclear body in genomic stability. Oncogene, 1999, 18, 7941-7947.	5.9	215
104	Phosphorylation-dependent regulation of cytosolic localization and oncogenic function of Skp2 by Akt/PKB. Nature Cell Biology, 2009, 11, 420-432.	10.3	213
105	Promyelocytic Leukemia Protein (Pml) and Daxx Participate in a Novel Nuclear Pathway for Apoptosis. Journal of Experimental Medicine, 2000, 191, 631-640.	8.5	210
106	Targeting of the Tumor Suppressor GRHL3 by a miR-21-Dependent Proto-Oncogenic Network Results in PTEN Loss and Tumorigenesis. Cancer Cell, 2011, 20, 635-648.	16.8	203
107	Reactivation of PTEN tumor suppressor for cancer treatment through inhibition of a MYC-WWP1 inhibitiory pathway. Science, 2019, 364, .	12.6	194
108	Regulation of B Versus T Lymphoid Lineage Fate Decision by the Proto-Oncogene LRF. Science, 2007, 316, 860-866.	12.6	190

PIER PAOLO PANDOLFI

#	Article	IF	CITATIONS
109	Deciphering the transcriptional complex critical for RhoA gene expression and cancer metastasis. Nature Cell Biology, 2010, 12, 457-467.	10.3	190
110	Nucleophosmin Serves as a Rate-Limiting Nuclear Export Chaperone for the Mammalian Ribosome. Molecular and Cellular Biology, 2008, 28, 7050-7065.	2.3	180
111	Acetylation-Dependent Regulation of Skp2 Function. Cell, 2012, 150, 179-193.	28.9	180
112	Repression of kit Expression by Plzf in Germ Cells. Molecular and Cellular Biology, 2007, 27, 6770-6781.	2.3	178
113	The PTEN–PI3K Axis in Cancer. Biomolecules, 2019, 9, 153.	4.0	178
114	Role of PML and the PML-nuclear body in the control of programmed cell death. Oncogene, 2003, 22, 9048-9057.	5.9	175
115	Role of GITR in activation response of T lymphocytes. Blood, 2002, 100, 350-352.	1.4	172
116	Proto-Oncogenic Role of Mutant IDH2 in Leukemia Initiation and Maintenance. Cell Stem Cell, 2014, 14, 329-341.	11.1	172
117	SPOP Promotes Ubiquitination and Degradation of the ERG Oncoprotein to Suppress Prostate Cancer Progression. Molecular Cell, 2015, 59, 917-930.	9.7	172
118	Functional Antagonism between Sall4 and Plzf Defines Germline Progenitors. Cell Stem Cell, 2012, 10, 284-298.	11.1	163
119	Plzf Mediates Transcriptional Repression of HoxD Gene Expression through Chromatin Remodeling. Developmental Cell, 2002, 3, 499-510.	7.0	160
120	Transcription therapy for cancer. Oncogene, 2001, 20, 3116-3127.	5.9	158
121	The chromosome make-up of mouse embryonic stem cells is predictive of somatic and germ cell chimaerism. Transgenic Research, 1997, 6, 321-328.	2.4	152
122	Ubiquitination of K-Ras Enhances Activation and Facilitates Binding to Select Downstream Effectors. Science Signaling, 2011, 4, ra13.	3.6	152
123	Breast Cancer — Loss of PTEN Predicts Resistance to Treatment. New England Journal of Medicine, 2004, 351, 2337-2338.	27.0	149
124	Two Critical Hits for Promyelocytic Leukemia. Molecular Cell, 2000, 6, 1131-1141.	9.7	146
125	Role of Promyelocytic Leukemia (Pml) Protein in Tumor Suppression. Journal of Experimental Medicine, 2001, 193, 521-530.	8.5	145
126	Virus against virus: a potential treatment for 2019-nCov (SARS-CoV-2) and other RNA viruses. Cell Research, 2020, 30, 189-190.	12.0	145

#	Article	IF	CITATIONS
127	The TLX1 oncogene drives aneuploidy in T cell transformation. Nature Medicine, 2010, 16, 1321-1327.	30.7	139
128	Development of Promyelocytic Zinc Finger and ThPOK-Expressing Innate γδT Cells Is Controlled by Strength of TCR Signaling and Id3. Journal of Immunology, 2010, 184, 1268-1279.	0.8	139
129	A co-clinical approach identifies mechanisms and potential therapies for androgen deprivation resistance in prostate cancer. Nature Genetics, 2013, 45, 747-755.	21.4	138
130	Diverse genetic-driven immune landscapes dictate tumor progression through distinct mechanisms. Nature Medicine, 2018, 24, 165-175.	30.7	137
131	Zbtb7a suppresses prostate cancer through repression of a Sox9-dependent pathway for cellular senescence bypass and tumor invasion. Nature Genetics, 2013, 45, 739-746.	21.4	134
132	The Epitranscriptome of Noncoding RNAs in Cancer. Cancer Discovery, 2017, 7, 359-368.	9.4	132
133	MUC1-mediated induction of myeloid-derived suppressor cells in patients with acute myeloid leukemia. Blood, 2017, 129, 1791-1801.	1.4	130
134	A RA-dependent, tumour-growth suppressive transcription complex is the target of the PML-RARÎ \pm and T18 oncoproteins. Nature Genetics, 1999, 23, 287-295.	21.4	127
135	PML at Mitochondria-Associated Membranes Is Critical for the Repression of Autophagy and Cancer Development. Cell Reports, 2016, 16, 2415-2427.	6.4	127
136	Molecular Cloning and Characterization of p56 Defines a New Family of RasGAP-binding Proteins. Journal of Biological Chemistry, 1998, 273, 4827-4830.	3.4	124
137	The Promyelocytic Leukemia Protein Protects p53 from Mdm2-mediated Inhibition and Degradation. Journal of Biological Chemistry, 2003, 278, 33134-33141.	3.4	123
138	Synergy against PML-RARa: targeting transcription, proteolysis, differentiation, and self-renewal in acute promyelocytic leukemia. Journal of Experimental Medicine, 2013, 210, 2793-2802.	8.5	121
139	PTEN ceRNA networks in human cancer. Methods, 2015, 77-78, 41-50.	3.8	121
140	Intragenic antagonistic roles of protein and circRNA in tumorigenesis. Cell Research, 2019, 29, 628-640.	12.0	121
141	Npm1 is a haploinsufficient suppressor of myeloid and lymphoid malignancies in the mouse. Blood, 2008, 111, 3859-3862.	1.4	120
142	PHD3 Loss in Cancer Enables Metabolic Reliance on Fatty Acid Oxidation via Deactivation of ACC2. Molecular Cell, 2016, 63, 1006-1020.	9.7	120
143	The APL Paradigm and the "Co-Clinical Trial―Project. Cancer Discovery, 2011, 1, 108-116.	9.4	118
144	Cabozantinib Eradicates Advanced Murine Prostate Cancer by Activating Antitumor Innate Immunity. Cancer Discovery, 2017, 7, 750-765.	9.4	112

#	Article	IF	CITATIONS
145	From pseudo-ceRNAs to circ-ceRNAs: a tale of cross-talk and competition. Nature Structural and Molecular Biology, 2013, 20, 541-543.	8.2	110
146	Aberrant <i>Rheb</i> -mediated mTORC1 activation and <i>Pten</i> haploinsufficiency are cooperative oncogenic events. Genes and Development, 2008, 22, 2172-2177.	5.9	109
147	Mouse hospital and co-clinical trial project—from bench to bedside. Nature Reviews Clinical Oncology, 2015, 12, 491-498.	27.6	109
148	AKT methylation by SETDB1 promotes AKT kinase activity and oncogenic functions. Nature Cell Biology, 2019, 21, 226-237.	10.3	109
149	Haploâ€insufficiency: a driving force in cancer. Journal of Pathology, 2011, 223, 138-147.	4.5	108
150	Epigenetic loss of RNA-methyltransferase NSUN5 in glioma targets ribosomes to drive a stress adaptive translational program. Acta Neuropathologica, 2019, 138, 1053-1074.	7.7	106
151	Identification of DOK genes as lung tumor suppressors. Nature Genetics, 2010, 42, 216-223.	21.4	105
152	TSPYL5 suppresses p53 levels and function by physical interaction with USP7. Nature Cell Biology, 2011, 13, 102-108.	10.3	105
153	Regulation of Pax3 transcriptional activity by SUMO-1-modified PML. Oncogene, 2001, 20, 1-9.	5.9	103
154	The theory of APL. Oncogene, 2001, 20, 7216-7222.	5.9	103
155	P62dok, a Negative Regulator of Ras and Mitogen-Activated Protein Kinase (Mapk) Activity, Opposes Leukemogenesis by P210bcr-abl. Journal of Experimental Medicine, 2001, 194, 275-284.	8.5	102
156	Genetic analysis of Pten and Tsc2 functional interactions in the mouse reveals asymmetrical haploinsufficiency in tumor suppression. Genes and Development, 2005, 19, 1779-1786.	5.9	101
157	In vivo analysis of the molecular pathogenesis of acute promyelocytic leukemia in the mouse and its therapeutic implications. Oncogene, 1999, 18, 5278-5292.	5.9	99
158	ETS rearrangements and prostate cancer initiation. Nature, 2009, 457, E1-E1.	27.8	98
159	LRF Is an Essential Downstream Target of GATA1 in Erythroid Development and Regulates BIM-Dependent Apoptosis. Developmental Cell, 2009, 17, 527-540.	7.0	97
160	Deconstructing feedback-signaling networks to improve anticancer therapy with mTORC1 inhibitors. Cell Cycle, 2008, 7, 3805-3809.	2.6	95
161	Pseudogenes in Human Cancer. Frontiers in Medicine, 2015, 2, 68.	2.6	92
162	CD8 T Cell-Intrinsic GITR Is Required for T Cell Clonal Expansion and Mouse Survival following Severe Influenza Infection. Journal of Immunology, 2010, 185, 7223-7234.	0.8	90

10

PIER PAOLO PANDOLFI

#	Article	IF	CITATIONS
163	Gli3 and Plzf cooperate in proximal limb patterning at early stages of limb development. Nature, 2005, 436, 277-281.	27.8	89
164	Promyelocytic Leukemia Zinc Finger Protein Regulates Interferon-Mediated Innate Immunity. Immunity, 2009, 30, 802-816.	14.3	88
165	Vulnerabilities of <i>PTEN</i> – <i>TP53</i> -Deficient Prostate Cancers to Compound PARP–PI3K Inhibition. Cancer Discovery, 2014, 4, 896-904.	9.4	88
166	<i>In Vivo</i> Role of INPP4B in Tumor and Metastasis Suppression through Regulation of PI3K–AKT Signaling at Endosomes. Cancer Discovery, 2015, 5, 740-751.	9.4	86
167	PTEN mediates Notch-dependent stalk cell arrest in angiogenesis. Nature Communications, 2015, 6, 7935.	12.8	86
168	The Transcription Factor Pokemon: A New Key Player in Cancer Pathogenesis: Figure 1 Cancer Research, 2005, 65, 8575-8578.	0.9	84
169	Intravital imaging reveals p53-dependent cancer cell death induced by phototherapy via calcium signaling. Oncotarget, 2015, 6, 1435-1445.	1.8	84
170	Germline NPM1 mutations lead to altered rRNA 2′-O-methylation and cause dyskeratosis congenita. Nature Genetics, 2019, 51, 1518-1529.	21.4	84
171	Role of Dok-1 and Dok-2 in Leukemia Suppression. Journal of Experimental Medicine, 2004, 200, 1689-1695.	8.5	82
172	The cytoplasmic NPM mutant induces myeloproliferation in a transgenic mouse model. Blood, 2010, 115, 3341-3345.	1.4	82
173	Somatic Induction of Pten Loss in a Preclinical Astrocytoma Model Reveals Major Roles in Disease Progression and Avenues for Target Discovery and Validation. Cancer Research, 2005, 65, 5172-5180.	0.9	81
174	G-protein-coupled receptors regulate autophagy by ZBTB16-mediated ubiquitination and proteasomal degradation of Atg14L. ELife, 2015, 4, e06734.	6.0	80
175	The Proto-Oncogene LRF Is under Post-Transcriptional Control of MiR-20a: Implications for Senescence. PLoS ONE, 2008, 3, e2542.	2.5	79
176	Role of the Promyelocytic Leukemia Protein PML in the Interferon Sensitivity of Lymphocytic Choriomeningitis Virus. Journal of Virology, 2001, 75, 6204-6208.	3.4	77
177	Optimized RNA-targeting CRISPR/Cas13d technology outperforms shRNA in identifying functional circRNAs. Genome Biology, 2021, 22, 41.	8.8	75
178	Stress from Nucleotide Depletion Activates the Transcriptional Regulator HEXIM1 to Suppress Melanoma. Molecular Cell, 2016, 62, 34-46.	9.7	71
179	Copper Promotes Tumorigenesis by Activating the PDK1â€AKT Oncogenic Pathway in a Copper Transporter 1 Dependent Manner. Advanced Science, 2021, 8, e2004303	11.2	66
180	Mutations of the PML tumor suppressor gene in acute promyelocytic leukemia. Blood, 2004, 103, 2358-2362.	1.4	64

#	Article	IF	CITATIONS
181	Differential Requirement of mTOR in Postmitotic Tissues and Tumorigenesis. Science Signaling, 2009, 2, ra2.	3.6	64
182	Phosphoinositide 3-Kinase–Dependent Membrane Recruitment of P62dok Is Essential for Its Negative Effect on Mitogen-Activated Protein (Map) Kinase Activation. Journal of Experimental Medicine, 2001, 194, 265-274.	8.5	63
183	Aberrant mRNA translation in cancer pathogenesis: an old concept revisited comes finally of age. Oncogene, 2004, 23, 3134-3137.	5.9	63
184	In vivo analysis of the molecular genetics of acute promyelocytic leukemia. Oncogene, 2001, 20, 5726-5735.	5.9	61
185	The Tug1 lncRNA locus is essential for male fertility. Genome Biology, 2020, 21, 237.	8.8	61
186	Therapeutic inhibition of USP7-PTEN network in chronic lymphocytic leukemia: a strategy to overcome <i>TP53</i> mutated/deleted clones. Oncotarget, 2017, 8, 35508-35522.	1.8	61
187	Amplification of the Angiogenic Signal through the Activation of the TSC/mTOR/HIF Axis by the KSHV vGPCR in Kaposi's Sarcoma. PLoS ONE, 2011, 6, e19103.	2.5	59
188	Stage-specific functions of leukemia/lymphoma-related factor (LRF) in the transcriptional control of osteoclast development. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2561-2566.	7.1	59
189	Differential p53-Independent Outcomes of p19 ^{Arf} Loss in Oncogenesis. Science Signaling, 2009, 2, ra44.	3.6	58
190	Distinct germline progenitor subsets defined through Tsc2– <scp>mTORC</scp> 1 signaling. EMBO Reports, 2015, 16, 467-480.	4.5	58
191	Downstream of Tyrosine Kinases-1 and Src Homology 2-Containing Inositol 5′-Phosphatase Are Required for Regulation of CD4+CD25+ T Cell Development. Journal of Immunology, 2006, 176, 3958-3965.	0.8	57
192	The APC/C E3 Ligase Complex Activator FZR1 Restricts BRAF Oncogenic Function. Cancer Discovery, 2017, 7, 424-441.	9.4	57
193	The RNA-binding protein ESRP1 promotes human colorectal cancer progression. Oncotarget, 2017, 8, 10007-10024.	1.8	57
194	Role of LRF/Pokemon in lineage fate decisions. Blood, 2013, 121, 2845-2853.	1.4	56
195	LATS suppresses mTORC1 activity to directly coordinate Hippo and mTORC1 pathways in growth control. Nature Cell Biology, 2020, 22, 246-256.	10.3	56
196	Stromal cell–derived factor-1α/CXCL12–induced chemotaxis of T cells involves activation of the RasGAP-associated docking protein p62Dok-1. Blood, 2005, 105, 474-480.	1.4	55
197	miR-96-5p targets PTEN expression affecting radio-chemosensitivity of HNSCC cells. Journal of Experimental and Clinical Cancer Research, 2019, 38, 141.	8.6	55
198	PTEN Methylation by NSD2 Controls Cellular Sensitivity to DNA Damage. Cancer Discovery, 2019, 9, 1306-1323.	9.4	54

#	Article	IF	CITATIONS
199	Akt Phosphorylates the Transcriptional Repressor Bmi1 to Block Its Effects on the Tumor-Suppressing <i>Ink4a-Arf</i> Locus. Science Signaling, 2012, 5, ra77.	3.6	53
200	PTEN self-regulates through USP11 via the PI3K-FOXO pathway to stabilize tumor suppression. Nature Communications, 2019, 10, 636.	12.8	53
201	SPOP Promotes Nanog Destruction to Suppress Stem Cell Traits and Prostate Cancer Progression. Developmental Cell, 2019, 48, 329-344.e5.	7.0	53
202	The puzzling multiple lives of PML and its role in the genesis of cancer. BioEssays, 2000, 22, 827-835.	2.5	52
203	<i>MCM7</i> and its hosted miR-25, 93 and 106b cluster elicit YAP/TAZ oncogenic activity in lung cancer. Carcinogenesis, 2017, 38, 64-75.	2.8	52
204	Skp2 dictates cell cycle-dependent metabolic oscillation between glycolysis and TCA cycle. Cell Research, 2021, 31, 80-93.	12.0	51
205	Dok-1 Independently Attenuates Ras/Mitogen-Activated Protein Kinase and Src/c-Myc Pathways To Inhibit Platelet-Derived Growth Factor-Induced Mitogenesis. Molecular and Cellular Biology, 2006, 26, 2479-2489.	2.3	50
206	E6AP ubiquitin ligase regulates PML-induced senescence in Myc-driven lymphomagenesis. Blood, 2012, 120, 822-832.	1.4	50
207	Characterization and Analysis of the Composition and Dynamics of the Mammalian Riboproteome. Cell Reports, 2013, 4, 1276-1287.	6.4	50
208	A Unified Nomenclature and Amino Acid Numbering for Human PTEN. Science Signaling, 2014, 7, pe15.	3.6	50
209	A Role for PML in Innate Immunity. Genes and Cancer, 2011, 2, 10-19.	1.9	49
210	CIP2A Promotes Proliferation of Spermatogonial Progenitor Cells and Spermatogenesis in Mice. PLoS ONE, 2012, 7, e33209.	2.5	49
211	MUC1 Is a Potential Target for the Treatment of Acute Myeloid Leukemia Stem Cells. Cancer Research, 2013, 73, 5569-5579.	0.9	49
212	Characterization of Dual PTEN and p53-Targeting MicroRNAs Identifies MicroRNA-638/Dnm2 as a Two-Hit Oncogenic Locus. Cell Reports, 2014, 8, 714-722.	6.4	49
213	WWP1 Gain-of-Function Inactivation of PTEN in Cancer Predisposition. New England Journal of Medicine, 2020, 382, 2103-2116.	27.0	49
214	The promyelocytic leukemia protein PML regulates c-Jun function in response to DNA damage. Blood, 2005, 105, 3686-3690.	1.4	48
215	A novel signaling network as a critical rheostat for the biology and maintenance of the normal stem cell and the cancer-initiating cell. Current Opinion in Genetics and Development, 2009, 19, 51-59.	3.3	47
216	Role of aberrant PI3K pathway activation in gallbladder tumorigenesis. Oncotarget, 2014, 5, 894-900.	1.8	47

#	Article	IF	CITATIONS
217	A circular twist on microRNA regulation. Cell Research, 2017, 27, 1401-1402.	12.0	46
218	Functional Connection between Rad51 and PML in Homology-Directed Repair. PLoS ONE, 2011, 6, e25814.	2.5	44
219	ZBTB7A Suppresses Melanoma Metastasis by Transcriptionally Repressing MCAM. Molecular Cancer Research, 2015, 13, 1206-1217.	3.4	44
220	Causality and Chance in the Development of Cancer. New England Journal of Medicine, 2015, 373, 84-88.	27.0	44
221	PML-Retinoic Acid Receptor α Inhibits PML IV Enhancement of PU.1-Induced C/EBPε Expression in Myeloid Differentiation. Molecular and Cellular Biology, 2007, 27, 5819-5834.	2.3	43
222	Morgana/chp-1, a ROCK Inhibitor Involved in Centrosome Duplication and Tumorigenesis. Developmental Cell, 2010, 18, 486-495.	7.0	43
223	Abi1 loss drives prostate tumorigenesis through activation of EMT and non-canonical WNT signaling. Cell Communication and Signaling, 2019, 17, 120.	6.5	43
224	In vivo analysis of the role of aberrant histone deacetylase recruitment and RARα blockade in the pathogenesis of acute promyelocytic leukemia. Journal of Experimental Medicine, 2006, 203, 821-828.	8.5	42
225	Mitochondria associated membranes (MAMs) as critical hubs for apoptosis. Communicative and Integrative Biology, 2011, 4, 334-335.	1.4	42
226	Promyelocytic Leukemia Zinc Finger Protein Activates GATA4 Transcription and Mediates Cardiac Hypertrophic Signaling from Angiotensin II Receptor 2. PLoS ONE, 2012, 7, e35632.	2.5	42
227	p18 Ink4c and Pten Constrain a Positive Regulatory Loop between Cell Growth and Cell Cycle Control. Molecular and Cellular Biology, 2006, 26, 4564-4576.	2.3	41
228	Aberrant ceRNA activity drives lung cancer. Cell Research, 2014, 24, 259-260.	12.0	41
229	Mouse models for multistep tumorigenesis. Trends in Cell Biology, 2001, 11, S2-S9.	7.9	40
230	The promyelocytic leukaemia protein tumour suppressor functions as a transcriptional regulator of p63. Oncogene, 2005, 24, 6982-6986.	5.9	40
231	Noncoding RNAs and Cancer. Cell, 2013, 153, 9-10.	28.9	40
232	Metastasis-associated <i>MCL1</i> and <i>P16</i> copy number alterations dictate resistance to vemurafenib in a <i>BRAFV600E</i> patient-derived papillary thyroid carcinoma preclinical model. Oncotarget, 2015, 6, 42445-42467.	1.8	40
233	Alterations of tumor microenvironment by carbon monoxide impedes lung cancer growth. Oncotarget, 2016, 7, 23919-23932.	1.8	40
234	Dok1 and Dok2 proteins regulate natural killer cell development and function. EMBO Journal, 2014, 33, 1928-1940.	7.8	39

#	Article	IF	CITATIONS
235	The Csk-Associated Adaptor PAG Inhibits Effector T Cell Activation in Cooperation with Phosphatase PTPN22 and Dok Adaptors. Cell Reports, 2016, 17, 2776-2788.	6.4	39
236	Deregulated PP1α phosphatase activity towards MAPK activation is antagonized by a tumor suppressive failsafe mechanism. Nature Communications, 2018, 9, 159.	12.8	39
237	The RNA Binding Protein ESRP1 Fine-Tunes the Expression of Pluripotency-Related Factors in Mouse Embryonic Stem Cells. PLoS ONE, 2013, 8, e72300.	2.5	39
238	Myeloid leukemia with promyelocytic features in transgenic mice expressing hCG-NuMA-RARα. Oncogene, 2004, 23, 665-678.	5.9	38
239	Gene rearrangements in the molecular pathogenesis of acute promyelocytic leukemia. Journal of Cellular Physiology, 1997, 173, 288-296.	4.1	37
240	Acetylation of PML Is Involved in Histone Deacetylase Inhibitor-mediated Apoptosis. Journal of Biological Chemistry, 2008, 283, 24420-24425.	3.4	37
241	The nuclear bodies inside out: PML conquers the cytoplasm. Current Opinion in Cell Biology, 2011, 23, 360-366.	5.4	37
242	Gata3 antagonizes cancer progression in Pten-deficient prostates. Human Molecular Genetics, 2013, 22, 2400-2410.	2.9	37
243	<scp>HIF</scp> factors cooperate with <scp>PML</scp> â€ <scp>RAR</scp> α to promote acute promyelocytic leukemia progression and relapse. EMBO Molecular Medicine, 2014, 6, 640-650.	6.9	37
244	PTEN Is a Negative Regulator of NK Cell Cytolytic Function. Journal of Immunology, 2015, 194, 1832-1840.	0.8	37
245	Nanoformulation of Olaparib Amplifies PARP Inhibition and Sensitizes <i>PTEN/TP53-</i> Deficient Prostate Cancer to Radiation. Molecular Cancer Therapeutics, 2017, 16, 1279-1289.	4.1	37
246	A focus on the spread of the delta variant of SARS-CoV-2 in India. Indian Journal of Medical Research, 2021, 153, 537.	1.0	37
247	Acute Promyelocytic Leukemia as a Model for Cross-Talk Between Interferon and Retinoic Acid Pathways: From Molecular Biology to Clinical Applications. Leukemia and Lymphoma, 1998, 30, 11-22.	1.3	34
248	A co-clinical platform to accelerate cancer treatment optimization. Trends in Molecular Medicine, 2015, 21, 1-5.	6.7	34
249	Inhibition of HECT E3 ligases as potential therapy for COVID-19. Cell Death and Disease, 2021, 12, 310.	6.3	33
250	NPMc+ cooperates with Flt3/ITD mutations to cause acute leukemia recapitulating human disease. Experimental Hematology, 2014, 42, 101-113.e5.	0.4	32
251	Vulnerabilities in mIDH2 AML confer sensitivity to APL-like targeted combination therapy. Cell Research, 2019, 29, 446-459.	12.0	32
252	Role of BRAFV600E in the First Preclinical Model of Multifocal Infiltrating Myopericytoma Development and Microenvironment. Journal of the National Cancer Institute, 2014, 106, .	6.3	31

#	Article	IF	CITATIONS
253	Tetravalent SARS-CoV-2 Neutralizing Antibodies Show Enhanced Potency and Resistance to Escape Mutations. Journal of Molecular Biology, 2021, 433, 167177.	4.2	31
254	The PTEN Tumor Suppressor Forms Homodimers in Solution. Structure, 2015, 23, 1952-1957.	3.3	30
255	Faithfull Modeling of PTEN Loss Driven Diseases in the Mouse. Current Topics in Microbiology and Immunology, 2010, 347, 135-168.	1.1	29
256	Translationâ€dependent mechanisms lead to PML upregulation and mediate oncogenic Kâ€RASâ€induced cellular senescence. EMBO Molecular Medicine, 2012, 4, 594-602.	6.9	29
257	Inactivation of PBX3 and HOXA9 by down-regulating H3K79 methylation represses NPM1-mutated leukemic cell survival. Theranostics, 2018, 8, 4359-4371.	10.0	28
258	Persistent Immune Stimulation Exacerbates Genetically Driven Myeloproliferative Disorders via Stromal Remodeling. Cancer Research, 2017, 77, 3685-3699.	0.9	27
259	The Tumor Suppressor PML Specifically Accumulates at RPA/Rad51-Containing DNA Damage Repair Foci but Is Nonessential for DNA Damage-Induced Fibroblast Senescence. Molecular and Cellular Biology, 2014, 34, 1733-1746.	2.3	26
260	BCR-ABL inactivates cytosolic PTEN through Casein Kinase II mediated tail phosphorylation. Cell Cycle, 2015, 14, 973-979.	2.6	26
261	Loss of PML cooperates with mutant p53 to drive more aggressive cancers in a gender-dependent manner. Cell Cycle, 2013, 12, 1722-1731.	2.6	25
262	miR-22 in tumorigenesis. Cell Cycle, 2014, 13, 11-12.	2.6	25
263	A non-cell-autonomous role for Pml in the maintenance of leukemia from the niche. Nature Communications, 2018, 9, 66.	12.8	25
264	The Interplay Between the Genetic and Immune Landscapes of AML: Mechanisms and Implications for Risk Stratification and Therapy. Frontiers in Oncology, 2019, 9, 1162.	2.8	25
265	Transcriptional regulation of cellular transformation. Nature Medicine, 2000, 6, 742-744.	30.7	24
266	Cellular Senescence as a Possible Mechanism for Halting Progression of Keloid Lesions. Genes and Cancer, 2011, 2, 1061-1066.	1.9	24
267	Suppression of <i>CHK1</i> by ETS Family Members Promotes DNA Damage Response Bypass and Tumorigenesis. Cancer Discovery, 2015, 5, 550-563.	9.4	24
268	Bone Marrow Endosteal Mesenchymal Progenitors Depend on HIF Factors for Maintenance and Regulation of Hematopoiesis. Stem Cell Reports, 2014, 2, 794-809.	4.8	23
269	A Genetic Platform to Model Sarcomagenesis from Primary Adult Mesenchymal Stem Cells. Cancer Discovery, 2015, 5, 396-409.	9.4	22
270	SPAR, a lncRNA encoded mTORC1 inhibitor. Cell Cycle, 2017, 16, 815-816.	2.6	22

#	Article	IF	CITATIONS
271	Generation of Functional Hepatocytes From Mouse Germ Line Cell-Derived Pluripotent Stem Cells In Vitro. Stem Cells and Development, 2010, 19, 1183-1194.	2.1	21
272	Dual Pten/Tp53 Suppression Promotes Sarcoma Progression by Activating Notch Signaling. American Journal of Pathology, 2013, 182, 2015-2027.	3.8	21
273	Morgana acts as a protoâ€oncogene through inhibition of a <scp>ROCK–PTEN</scp> pathway. Journal of Pathology, 2014, 234, 152-163.	4.5	21
274	Two Different Therapeutic Approaches for SARS-CoV-2 in hiPSCs-Derived Lung Organoids. Cells, 2022, 11, 1235.	4.1	21
275	The Mouse Hospital and Its Integration in Ultra-Precision Approaches to Cancer Care. Frontiers in Oncology, 2018, 8, 340.	2.8	20
276	Differential Expression of S6K2 Dictates Tissue-Specific Requirement for S6K1 in Mediating Aberrant mTORC1 Signaling and Tumorigenesis. Cancer Research, 2011, 71, 3669-3675.	0.9	19
277	Morgana acts as an oncosuppressor in chronic myeloid leukemia. Blood, 2015, 125, 2245-2253.	1.4	19
278	The pleiotropic role of non-coding genes in development and cancer. Current Opinion in Cell Biology, 2016, 43, 104-113.	5.4	19
279	Interplay between c-Src and the APC/C co-activator Cdh1 regulates mammary tumorigenesis. Nature Communications, 2019, 10, 3716.	12.8	19
280	PML/RARa inhibits PTEN expression in hematopoietic cells by competing with PU.1 transcriptional activity. Oncotarget, 2016, 7, 66386-66397.	1.8	19
281	Pml represses tumour progression through inhibition of mTOR. EMBO Molecular Medicine, 2011, 3, 249-257.	6.9	18
282	LRF maintains genome integrity by regulating the non-homologous end joining pathway of DNA repair. Nature Communications, 2015, 6, 8325.	12.8	18
283	Regulation of NF-κB by PML and PML-RARα. Scientific Reports, 2017, 7, 44539.	3.3	18
284	Identification of competing endogenous RNAs of the tumor suppressor gene PTEN: A probabilistic approach. Scientific Reports, 2017, 7, 7755.	3.3	18
285	Endosome and INPP4B. Oncotarget, 2016, 7, 5-6.	1.8	18
286	Up-regulation of Translation Eukaryotic Initiation Factor 4E in Nucleophosmin 1 Haploinsufficient Cells Results in Changes in CCAAT Enhancer-binding Protein α Activity. Journal of Biological Chemistry, 2012, 287, 32728-32737.	3.4	17
287	ZBTB7A governs estrogen receptor alpha expression in breast cancer. Journal of Molecular Cell Biology, 2018, 10, 273-284.	3.3	17
288	Pseudogenes as Competitive Endogenous RNAs: Target Prediction and Validation. Methods in Molecular Biology, 2014, 1167, 199-212.	0.9	16

#	Article	IF	CITATIONS
289	"Snorkeling―for missing players in cancer. Journal of Clinical Investigation, 2012, 122, 2765-2768.	8.2	16
290	Compound haploinsufficiency of Dok2 and Dusp4 promotes lung tumorigenesis. Journal of Clinical Investigation, 2018, 129, 215-222.	8.2	16
291	Target competition: transcription factors enter the limelight. Genome Biology, 2014, 15, 114.	9.6	15
292	SnapShot: PTEN Signaling Pathways. Cell, 2008, 133, 550-550.e1.	28.9	14
293	Dok1 and Dok2 Proteins Regulate Cell Cycle in Hematopoietic Stem and Progenitor Cells. Journal of Immunology, 2016, 196, 4110-4121.	0.8	14
294	Loss of <i>LDAH</i> associated with prostate cancer and hearing loss. Human Molecular Genetics, 2018, 27, 4194-4203.	2.9	14
295	PTEN Mouse Models of Cancer Initiation and Progression. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a037283.	6.2	14
296	Genetic fusions favor tumorigenesis through degron loss in oncogenes. Nature Communications, 2021, 12, 6704.	12.8	14
297	Effective Utilization and Appropriate Selection of Genetically Engineered Mouse Models for Translational Integration of Mouse and Human Trials. Cold Spring Harbor Protocols, 2013, 2013, pdb.top078774.	0.3	13
298	Of Model Pets and Cancer Models: An Introduction to Mouse Models of Cancer. Cold Spring Harbor Protocols, 2014, 2014, pdb.top069757.	0.3	13
299	PTENP1 is a ceRNA for PTEN: it's CRISPR clear. Journal of Hematology and Oncology, 2020, 13, 73.	17.0	13
300	Found in translation of mTOR signaling. Cell Research, 2012, 22, 1315-1318.	12.0	12
301	Suppression of T-cell lymphomagenesis in mice requires PTEN phosphatase activity. Blood, 2015, 125, 852-855.	1.4	12
302	DOK2 Inhibits EGFR-Mutated Lung Adenocarcinoma. PLoS ONE, 2013, 8, e79526.	2.5	12
303	The Lilliputians and the Giant: An Emerging Oncogenic microRNA Network that Suppresses the PTEN Tumor Suppressor In Vivo. MicroRNA (Shariqah, United Arab Emirates), 2013, 2, 127-136.	1.2	12
304	MicroRNAs in the pathogenesis of myelodysplastic syndromes and myeloid leukaemia. Current Opinion in Hematology, 2014, 21, 276-282.	2.5	11
305	A Dialog on the First 20 Years of PML Research and the Next 20 Ahead. Frontiers in Oncology, 2014, 4, 23.	2.8	11
306	The Promyelocytic Leukemia Protein Is Upregulated in Conditions of Obesity and Liver Steatosis. International Journal of Biological Sciences, 2015, 11, 629-632.	6.4	11

#	Article	IF	CITATIONS
307	The Mitochondrial Italian Human Proteome Project Initiative (mt-HPP). Molecular BioSystems, 2013, 9, 1984-92.	2.9	10
308	Pills of PTEN? In and out for tumor suppression. Cell Research, 2013, 23, 1155-1156.	12.0	10
309	Tumor microenvironment revisited. EMBO Reports, 2014, 15, 458-459.	4.5	10
310	The p85 isoform of the kinase S6K1 functions as a secreted oncoprotein to facilitate cell migration and tumor growth. Science Signaling, 2018, 11, .	3.6	10
311	Establishment of a Humanized APL Model via the Transplantation of PML-RARA-Transduced Human Common Myeloid Progenitors into Immunodeficient Mice. PLoS ONE, 2014, 9, e111082.	2.5	9
312	Dok-1 negatively regulates platelet integrin αIIbβ3 outside-in signalling and inhibits thrombosis in mice. Thrombosis and Haemostasis, 2016, 115, 969-978.	3.4	9
313	Dual DNA and protein tagging of open chromatin unveils dynamics of epigenomic landscapes in leukemia. Nature Methods, 2021, 18, 293-302.	19.0	9
314	Peptide Platform as a Powerful Tool in the Fight against COVID-19. Viruses, 2021, 13, 1667.	3.3	9
315	Loss of Wave1 gene defines a subtype of lethal prostate cancer. Oncotarget, 2015, 6, 12383-12391.	1.8	9
316	Determining the contribution of NPM1 heterozygosity to NPM-ALK-induced lymphomagenesis. Laboratory Investigation, 2011, 91, 1298-1303.	3.7	8
317	Development of the Proximal-Anterior Skeletal Elements in the Mouse Hindlimb Is Regulated by a Transcriptional and Signaling Network Controlled by Sall4. Genetics, 2020, 215, 129-141.	2.9	8
318	The HECT family of E3 ubiquitin ligases and PTEN. Seminars in Cancer Biology, 2022, 85, 43-51.	9.6	8
319	In Vivo Analysis of PML-RARA in a Humanized Mouse Model. Blood, 2014, 124, 1020-1020.	1.4	8
320	Utility of LRF/Pokemon and NOTCH1 Protein Expression in the Distinction Between Nodular Lymphocyte-Predominant Hodgkin Lymphoma and Classical Hodgkin Lymphoma. International Journal of Surgical Pathology, 2014, 22, 6-11.	0.8	7
321	Shape-shifting and tumor suppression by PLZF. Oncotarget, 2010, 1, 3-5.	1.8	7
322	WWP1 inactivation enhances efficacy of PI3K inhibitors while suppressing their toxicities in breast cancer models. Journal of Clinical Investigation, 2021, 131, .	8.2	7
323	Elucidating the Oncogenic Potential of NPMc+ In Vitro and In Vivo Blood, 2006, 108, 12-12.	1.4	6
324	Dokâ€1 overexpression promotes development of γÎ′ natural killer <scp>T</scp> cells. European Journal of Immunology, 2012, 42, 2491-2504.	2.9	5

#	Article	IF	CITATIONS
325	WWP1 germline variants are associated with normocephalic autism spectrum disorder. Cell Death and Disease, 2020, 11, 529.	6.3	5
326	The Role of Nucleophosmin In Hematopoietic Stem Cells and the Pathogenesis of Myelodysplastic Syndrome. Blood, 2010, 116, 95-95.	1.4	5
327	A PML–PPAR-Î′ Pathway for Fatty Acid Oxidation Regulates Hematopoietic Stem Cell Maintenance Through the Control of Asymmetric Division Blood, 2012, 120, 2327-2327.	1.4	5
328	Compound In Vivo Inactivation of Pml and p53 Uncovers a Functional Interaction in Angiosarcoma Suppression. Genes and Cancer, 2012, 3, 599-603.	1.9	4
329	Causality and Chance in the Development of Cancer. New England Journal of Medicine, 2015, 373, 1578-1579.	27.0	3
330	Preclinical and Coclinical Studies in Prostate Cancer. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a030544.	6.2	3
331	In Vivo Silencing/Overexpression of IncRNAs by CRISPR/Cas System. Methods in Molecular Biology, 2021, 2348, 205-220.	0.9	3
332	Phosphatase-Independent Functions of the Tumor Suppressor PTEN. , 2016, , 247-260.		3
333	Treatment with 5-Azacytidine Accelerates Acute Promyelocytic Leukemia Leukemogenesis in a Transgenic Mouse Model. Genes and Cancer, 2011, 2, 160-165.	1.9	2
334	The puzzling multiple lives of PML and its role in the genesis of cancer. BioEssays, 2000, 22, 827-835.	2.5	2
335	The BRAF Pseudogene Is a Proto-Oncogenic Competitive Endogenous RNA. Blood, 2014, 124, 263-263.	1.4	2
336	Molecular Genetics of APL. , 2018, , 41-53.		1
337	Posttranscriptional Regulation of PTEN by Competing Endogenous RNAs. Methods in Molecular Biology, 2016, 1388, 139-154.	0.9	1
338	Modeling Cancer-Associated Mutations of PTEN in Mice. Methods in Molecular Biology, 2016, 1388, 289-306.	0.9	1
339	Cytoplasmic Nucleophosmin (NPMc+) Mutations and FMS-Like Tyrosine Kinase 3 (Flt3) Internal Tandem Duplication (ITD) Mutations Cooperate to Cause Leukemia In a Mouse Model. Blood, 2010, 116, 145-145.	1.4	1
340	Targeting Acute Myeloid Leukemia Stem Cells by MUC1-C Subunit Inhibition. Blood, 2010, 116, 848-848.	1.4	1
341	hnRNP K Overexpression Synergizes with Mutant NPM1 to Drive Acute Myeloid Leukemia Progression. Blood, 2014, 124, 2382-2382.	1.4	1
342	Cytoplasmic PML Function in TGF-Î ² Signaling Blood, 2004, 104, 481-481.	1.4	1

#	Article	IF	CITATIONS
343	Nucleophosmin Is Required for Macrophage Function and Maturation Blood, 2009, 114, 238-238.	1.4	1
344	Mouse Models of Human Cancer: Role in Preclinical Testing and Personalized Medicine. , 2012, , 569-589.		1
345	Hematological Malignancies and Premalignant Conditions. , 2014, , 467-486.		1
346	Aberrant rRNA 2'-O-Methylation Causes Bone Marrow Failure and Defective Immune Function. Blood, 2020, 136, 11-12.	1.4	1
347	Dosage and tumour suppression. Journal of Pathology, 2012, 227, e1-e1.	4.5	0
348	Pseudogenes as Competitive Endogenous RNAs: Target Prediction and Validation. Methods in Molecular Biology, 2021, 2324, 115-129.	0.9	0
349	Activation of the P38 MAPK Pathway Results in Ubiquitin-Proteasome Degradation of the PML Tumor Suppressor Protein Blood, 2004, 104, 2553-2553.	1.4	0
350	LRF/Pokemon Plays a Pivotal Role in B Versus T Lymphoid Lineage Fate Decision at the Early Lymphoid Progenitor Stage by Opposing Notch1 Signaling Blood, 2006, 108, 778-778.	1.4	0
351	Generation of a Factor Dependent Myeloid Cell Line from Nucleophosmin-1 Heterozygous (NPM-1+/â^') Mouse Bone Marrow as a Model for 5q- MDS. Blood, 2008, 112, 852-852.	1.4	Ο
352	Nucleophosmin-1 Interacts with CCAAT Enhancer Binding Protein Alpha (C/EBPα) to Facilitate Granulocyte Maturation: Implications in MDS and AML Blood, 2009, 114, 2768-2768.	1.4	0
353	Akt-Mediated Phosphorylation of Bmi1 Regulates Its Chromatin Association and Growth Promoting Properties Blood, 2009, 114, 3605-3605.	1.4	Ο
354	BCL11B Mutations In T-Cell Acute Lymphoblastic Leukemia. Blood, 2010, 116, 471-471.	1.4	0
355	A Dual Proto-Oncogenic and Tumor Suppressive Role of LRF/POKEMON In Hemopoietic Malignancies through Control of Cell Fate Decision. Blood, 2010, 116, SCI-14-SCI-14.	1.4	Ο
356	Upregulation of eIF4E in Nucleophosmin 1 (NPM1) Haploinsufficient Cells Alters CCAAT Enhancer Binding Protein Alpha (C/EBPα) Activity: Implications for MDS and AML. Blood, 2011, 118, 2432-2432.	1.4	0
357	Targeting Leukemia Initiating Cells by MUC1-C Subunit Inhibition. Blood, 2012, 120, 3583-3583.	1.4	0
358	ceRNAs and ceRNA Networks in Normal and Malignant Hematopoiesis and Their Therapeutic Implications. Blood, 2013, 122, SCI-30-SCI-30.	1.4	0
359	Abstract B06: Abi1 levels regulate prostate tumor progression in mice downstream from Pten inactivation. , 2014, , .		0