Giacomo Al Gerosa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4958313/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Size-segregated aerosol fluxes, deposition velocities, and chemical composition in an Alpine valley. Atmospheric Research, 2022, 268, 105995.	1.8	4
2	Assessment of Integrated Aerosol Sampling Techniques in Indoor, Confined and Outdoor Environments Characterized by Specific Emission Sources. Applied Sciences (Switzerland), 2021, 11, 4360.	1.3	2
3	Ammonia, nitrous oxide, carbon dioxide, and water vapor fluxes after green manuring of faba bean under Mediterranean climate. Agriculture, Ecosystems and Environment, 2021, 315, 107439.	2.5	11
4	Method comparison of indirect assessments of understory leaf area index (LAIu): A case study across the extended network of ICOS forest ecosystem sites in Europe. Ecological Indicators, 2021, 128, 107841.	2.6	12
5	Retrieval and validation of forest background reflectivity from daily Moderate Resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF) data across European forests. Biogeosciences, 2021, 18, 621-635.	1.3	12
6	Selection of chlorophyll fluorescence parameters as indicators of photosynthetic efficiency in large scale plant ecological studies. Ecological Indicators, 2020, 108, 105686.	2.6	77
7	Introducing the Bulletin of Atmospheric Science and Technology. Bulletin of Atmospheric Science and Technology, 2020, 1, 1-11.	0.4	2
8	Selection of tree species for forests under climate change: is PSI functioning a better predictor for net photosynthesis and growth than PSII?. Tree Physiology, 2020, 40, 1561-1571.	1.4	12
9	Dry Deposition of Ozone Over Land: Processes, Measurement, and Modeling. Reviews of Geophysics, 2020, 58, e2019RG000670.	9.0	86
10	Neural Network Analysis to Evaluate Ozone Damage to Vegetation Under Different Climatic Conditions. Frontiers in Forests and Global Change, 2020, 3, .	1.0	6
11	Vegetation feedbacks during drought exacerbate ozone air pollution extremes in Europe. Nature Climate Change, 2020, 10, 444-451.	8.1	96
12	A Site-Specific Analysis of the Implications of a Changing Ozone Profile and Climate for Stomatal Ozone Fluxes in Europe. Water, Air, and Soil Pollution, 2019, 230, 1.	1.1	9
13	Size-resolved aerosol fluxes above a broadleaved deciduous forest. Agricultural and Forest Meteorology, 2019, 279, 107757.	1.9	5
14	Site- and house-specific and meteorological factors influencing exchange of particles between outdoor and indoor domestic environments. Building and Environment, 2019, 160, 106181.	3.0	10
15	Assessing the Impact of Ozone on Forest Trees in An Integrative Perspective: Are Foliar Visible Symptoms Suitable Predictors for Growth Reduction? A Critical Review. Forests, 2019, 10, 1144.	0.9	14
16	Scarce evidence of ozone effect on recent health and productivity of alpine forests—a case study in Trentino, N. Italy. Environmental Science and Pollution Research, 2018, 25, 8217-8232.	2.7	15
17	Increased nitrogen wet deposition triggers negative effects of ozone on the biomass production of Carpinus betulus L. young trees. Environmental and Experimental Botany, 2018, 152, 128-136.	2.0	22
18	Characterization of ozone deposition to a mixed oak–hornbeam forest – flux measurements at five levels above and inside the canopy and their interactions with nitric oxide. Atmospheric Chemistry and Physics, 2018, 18, 17945-17961.	1.9	19

GIACOMO AL GEROSA

#	Article	IF	CITATIONS
19	Evaluation of simulated ozone effects in forest ecosystems against biomass damage estimates from fumigation experiments. Biogeosciences, 2018, 15, 6941-6957.	1.3	11
20	Dose-response relationships for ozone effect on the growth of deciduous broadleaf oaks in mediterranean environment. Atmospheric Environment, 2018, 190, 331-341.	1.9	6
21	Tropospheric Ozone Assessment Report: Present-day tropospheric ozone distribution and trends relevant to vegetation. Elementa, 2018, 6, .	1.1	212
22	A dose-response relationship for marketable yield reduction of two lettuce (Lactuca sativa L.) cultivars exposed to tropospheric ozone in Southern Europe. Environmental Science and Pollution Research, 2017, 24, 26249-26258.	2.7	12
23	The ozone-like syndrome in durum wheat (Triticum durum Desf.): Mechanisms underlying the different symptomatic responses of two sensitive cultivars. Plant Physiology and Biochemistry, 2017, 112, 261-269.	2.8	24
24	Ecological impacts of atmospheric pollution and interactions with climate change in terrestrial ecosystems of the Mediterranean Basin: Current research and future directions. Environmental Pollution, 2017, 227, 194-206.	3.7	98
25	Ozone risk assessment for an Alpine larch forest in two vegetative seasons with different approaches: comparison of POD1 and AOT40. Environmental Science and Pollution Research, 2017, 24, 26238-26248.	2.7	7
26	(E)merging directions on air pollution and climate change research in Mediterranean Basin ecosystems. Environmental Science and Pollution Research, 2017, 24, 26155-26159.	2.7	3
27	Vertical Ozone Gradients above Forests. Comparison of Different Calculation Options with Direct Ozone Measurements above a Mature Forest and Consequences for Ozone Risk Assessment. Forests, 2017, 8, 337.	0.9	12
28	Integrated study through LCA, ELCC analysis and air quality modelling related to the adoption of high efficiency small scale pellet boilers. Biomass and Bioenergy, 2016, 90, 262-272.	2.9	20
29	Field evaluation combined with modelling analysis to study fertilizer and tillage as factors affecting N2O emissions: A case study in the Po valley (Northern Italy). Agriculture, Ecosystems and Environment, 2016, 225, 72-85.	2.5	25
30	Long-term measurements of NOx and O3 soil fluxes in a temperate deciduous forest. Agricultural and Forest Meteorology, 2016, 228-229, 205-216.	1.9	17
31	Evaluating stomatal ozone fluxes in WRF-Chem: Comparing ozone uptake in Mediterranean ecosystems. Atmospheric Environment, 2016, 143, 237-248.	1.9	20
32	Characterization of total ecosystem-scale biogenic VOC exchange at a Mediterranean oak–hornbeam forest. Atmospheric Chemistry and Physics, 2016, 16, 7171-7194.	1.9	24
33	Biomass and physiological responses of Quercus robur (L.) young trees during 2Âyears of treatments with different levels of ozone and nitrogen wet deposition. Trees - Structure and Function, 2016, 30, 1995-2010.	0.9	20
34	Early physiological responses of Pinus pinea L. seedlings infected by Heterobasidion sp.pl. in an ozone-enriched atmospheric environment. Tree Physiology, 2015, 35, 331-340.	1.4	12
35	A flux-based assessment of above and below ground biomass of Holm oak (Quercus ilex L.) seedlings after one season of exposure to high ozone concentrations. Atmospheric Environment, 2015, 113, 41-49.	1.9	35
36	New flux based dose–response relationships for ozone for European forest tree species. Environmental Pollution, 2015, 206, 163-174.	3.7	106

#	Article	IF	CITATIONS
37	Varietal screening of ozone sensitivity in Mediterranean durum wheat (Triticum durum, Desf.). Atmospheric Environment, 2015, 110, 18-26.	1.9	23
38	Some remarks on "New functions for estimating AOT40 from ozone passive sampling―by De Marco etÂal. (2014). Atmospheric Environment, 2014, 98, 707-710.	1.9	3
39	Photosynthetic performance and biochemical adjustments in two co-occurring Mediterranean evergreens, Quercus ilex and Arbutus unedo, differing in salt-exclusion ability. Functional Plant Biology, 2014, 41, 391.	1.1	16
40	Setting ozone critical levels for protecting horticultural Mediterranean crops: Case study of tomato. Environmental Pollution, 2014, 185, 178-187.	3.7	30
41	Contrasting effects of water salinity and ozone concentration on two cultivars of durum wheat () Tj ETQq1 1 0.78	84314 rgB⁻ 3.74 rgB⁻	T 19verlock
42	Severe drought events increase the sensitivity to ozone on poplar clones. Environmental and Experimental Botany, 2014, 100, 94-104.	2.0	50
43	Responses to ozone on Populus "Oxford" clone in an open top chamber experiment assessed before sunrise and in full sunlight. Photosynthetica, 2013, 51, 267-280.	0.9	22
44	Intra-annual Pattern of Photosynthesis, Growth and Stable Isotope Partitioning in a Poplar Clone Subjected to Ozone and Water Stress. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	13
45	Assessing Present and Future Ozone Hazards to Natural Forests in the Alpine Area — Comparison of a Wide Scale Mapping Technique with Local Passive Sampler Measurements. , 2013, , .		1
46	Case Study: Valle Camonica and the Adamello Park. , 2013, , .		3
47	Short and long term photosynthetic adjustments in sun and shade leaves of <i>Fagus sylvatica</i> L., investigated by fluorescence transient (FT) analysis. Plant Biosystems, 2012, 146, 206-216.	0.8	34
48	Chlorophyll a fluorescence analysis along a vertical gradient of the crown in a poplar (Oxford) Tj ETQq0 0 0 rgBT /	Oyerlock 1 1.4	.0_Tf 50 302 47
49	A simple linear model for estimating ozone AOT40 at forest sites from raw passive sampling data. Journal of Environmental Monitoring, 2012, 14, 2238.	2.1	11
50	Errors in ozone risk assessment using standard conditions for converting ozone concentrations obtained by passive samplers in mountain regions. Journal of Environmental Monitoring, 2012, 14, 1703.	2.1	8
51	Evaluation of the uncertainty in the ozone flux effect modelling: From the experiments to the dose–response relationships. Atmospheric Environment, 2012, 54, 44-52.	1.9	12
52	Ozone stress in woody plants assessed with chlorophyll a fluorescence. A critical reassessment of existing data. Environmental and Experimental Botany, 2011, 73, 19-30.	2.0	117
53	Conclusive remarks. Reliability and comparability of chlorophyll fluorescence data from several field teams. Environmental and Experimental Botany, 2011, 73, 116-119.	2.0	21

54Gas exchange and JIP-test parameters of two Mediterranean maquis species are affected by sea spray
and ozone interaction. Environmental and Experimental Botany, 2011, 73, 80-88.2.024

GIACOMO AL GEROSA

#	Article	IF	CITATIONS
55	Growth and physiological responses to ozone and mild drought stress of tree species with different ecological requirements. Trees - Structure and Function, 2010, 24, 695-704.	0.9	36
56	Early Events in <i>Populus</i> Hybrid and <i>Fagus sylvatica</i> Leaves Exposed to Ozone. Scientific World Journal, The, 2010, 10, 512-527.	0.8	11
57	Interactions among vegetation and ozone, water and nitrogen fluxes in a coastal Mediterranean maquis ecosystem. Biogeosciences, 2009, 6, 1783-1798.	1.3	19
58	Atmospheric composition change: Ecosystems–Atmosphere interactions. Atmospheric Environment, 2009, 43, 5193-5267.	1.9	609
59	Nutritional Traits of Bean (Phaseolus vulgaris) Seeds from Plants Chronically Exposed to Ozone Pollution. Journal of Agricultural and Food Chemistry, 2009, 57, 201-208.	2.4	41
60	Comparison of seasonal variations of ozone exposure and fluxes in a Mediterranean Holm oak forest between the exceptionally dry 2003 and the following year. Environmental Pollution, 2009, 157, 1737-1744.	3.7	58
61	A flux-based assessment of the effects of ozone on foliar injury, photosynthesis, and yield of bean (Phaseolus vulgaris L. cv. Borlotto Nano Lingua di Fuoco) in open-top chambers. Environmental Pollution, 2009, 157, 1727-1736.	3.7	36
62	Validation of the stomatal flux approach for the assessment of ozone visible injury in young forest trees. Results from the TOP (transboundary ozone pollution) experiment at Curno, Italy. Environmental Pollution, 2009, 157, 1497-1505.	3.7	42
63	Visible leaf injury in young trees of Fagus sylvatica L. and Quercus robur L. in relation to ozone uptake and ozone exposure. An Open-Top Chambers experiment in South Alpine environmental conditions. Environmental Pollution, 2008, 152, 274-284.	3.7	44
64	Sensitivity analysis of a parameterization of the stomatal component of the DO3SE model for Quercus ilex to estimate ozone fluxes. Environmental Pollution, 2008, 155, 473-480.	3.7	43
65	Ozone fluxes and foliar injury development in the ozone-sensitive poplar clone Oxford (Populus) Tj ETQq1 1 0.78	34314 rgB ⁻ 1.4	Г /gyerlock 1
66	Challenges in Understanding the Risks to Natural and Semi-Natural Vegetation from Ozone Exposure. Italian Journal of Agronomy, 2008, 3, 53.	0.4	1
67	Ozone Flux Measurement and Modelling on Leaf/Shoot and Canopy Scale. Italian Journal of Agronomy, 2008, 3, 21.	0.4	1
68	Ozone Effects on Fruit Productivity and Photosynthetic Response of Two Tomato Cultivars in Relation to Stomatal Fluxes. Italian Journal of Agronomy, 2008, 3, 61.	0.4	9
69	Estimates of ozone AOT40 from passive sampling in forest sites in South-Western Europe. Environmental Pollution, 2007, 145, 629-635.	3.7	51
70	Robustness of modelled ozone exposures and doses. Environmental Pollution, 2007, 146, 578-586.	3.7	50
71	Measuring, modelling and testing ozone exposure, flux and effects on vegetation in southern European conditions—What does not work? A review from Italy. Environmental Pollution, 2007, 146, 648-658.	3.7	67
72	Photosynthesis responses to ozone in young trees of three species with different sensitivities, in a 2-year open-top chamber experiment (Curno, Italy). Physiologia Plantarum, 2007, 130, 122-135.	2.6	43

GIACOMO AL GEROSA

#	Article	IF	CITATIONS
73	Comparison of Different Algorithms for Stomatal Ozone Flux Determination from Micrometeorological Measurements. Water, Air, and Soil Pollution, 2007, 179, 309-321.	1.1	33
74	Sources of errors in assessing ozone visible symptoms on native vegetation. Environmental Pollution, 2006, 140, 257-268.	3.7	18
75	Ozone sensitivity of currant tomato (Lycopersicon pimpinellifolium), a potential bioindicator species. Environmental Pollution, 2006, 141, 275-282.	3.7	43
76	Ozone uptake by an evergreen Mediterranean Forest () in Italy. Part I: Micrometeorological flux measurements and flux partitioning. Atmospheric Environment, 2005, 39, 3255-3266.	1.9	94
77	Ozone uptake by an evergreen mediterranean forest (L.) in Italy—Part II: flux modelling. Upscaling leaf to canopy ozone uptake by a process-based model. Atmospheric Environment, 2005, 39, 3267-3278.	1.9	33
78	Leaf morphology and chemistry in Fagus sylvatica (beech) trees as affected by site factors and ozone: results from CONECOFOR permanent monitoring plots in Italy. Tree Physiology, 2005, 25, 211-219.	1.4	60
79	Modeling seasonal ozone fluxes to grassland and wheat: model improvement, testing, and application. Atmospheric Environment, 2004, 38, 2349-2359.	1.9	41
80	Stomatal ozone fluxes over a barley field in Italy. "Effective exposure―as a possible link between exposure- and flux-based approaches. Atmospheric Environment, 2004, 38, 2421-2432.	1.9	48
81	Crown condition surveys in Italian forests: issues in reporting findings. Environmental Monitoring and Assessment, 2003, 85, 221-238.	1.3	9
82	Micrometeorological determination of time-integrated stomatal ozone fluxes over wheat: a case study in Northern Italy. Atmospheric Environment, 2003, 37, 777-788.	1.9	50
83	Foliar response of an Ailanthus altissima clone in two sites with different levels of ozone-pollution. Environmental Pollution, 2003, 121, 137-146.	3.7	62
84	Ozone sensitivity of Fagus sylvatica and Fraxinus excelsior young trees in relation to leaf structure and foliar ozone uptake. Environmental Pollution, 2003, 125, 91-98.	3.7	59
85	Ozone Risk Assessment and Mapping in the Alps Based on Data from Passive Samplers. Scientific World Journal, The, 2002, 2, 1023-1035.	0.8	9
86	Techniques of Ozone Monitoring in a Mountain Forest Region: Passive and Continuous Sampling, Vertical and Canopy Profiles. Scientific World Journal, The, 2001, 1, 612-626.	0.8	7
87	Tropospheric Ozone in Alpine Forest Sites: Air Quality Monitoring and Statistical Data Analysis. Water, Air, and Soil Pollution, 1999, 116, 345-350.	1.1	13
88	Ozone Fluxes to a Larch Forest Ecosystem at the Timberline in the Italian Alps. , 0, , .		2