
Ganesh V Halade

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4958107/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Dysfunction of resolution receptor triggers cardiomyopathy of obesity and signs of non-resolving inflammation in heart failure. Molecular and Cellular Endocrinology, 2022, 542, 111521.	1.6	0
2	Metabolic Transformation of Fat in Obesity Determines the Inflammation Resolving Capacity of Splenocardiac and Cardiorenal Networks in Heart Failure. American Journal of Physiology - Heart and Circulatory Physiology, 2022, , .	1.5	5
3	Inflammation and resolution signaling in cardiac repair and heart failure. EBioMedicine, 2022, 79, 103992.	2.7	70
4	Novel biomarkers of inflammation in heart failure with preserved ejection fraction: analysis from a large prospective cohort study. BMC Cardiovascular Disorders, 2022, 22, 221.	0.7	3
5	Dually Responsive Poly(N-vinylcaprolactam)-b-poly(dimethylsiloxane)-b-poly(N-vinylcaprolactam) Polymersomes for Controlled Delivery. Molecules, 2022, 27, 3485.	1.7	6
6	Guidelines on models of diabetic heart disease. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 323, H176-H200.	1.5	20
7	Natriuretic Peptide Deficiency in ObeseÂIndividuals. Journal of the American College of Cardiology, 2021, 77, 3138-3140.	1.2	7
8	Prolonged QT intervals in mice with cardiomyocyteâ€specific deficiency of the molecular clock. Acta Physiologica, 2021, 233, e13707.	1.8	15
9	Reperfused vs. nonreperfused myocardial infarction: when to use which model. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H208-H213.	1.5	29
10	Lipoxygenase inhibitor ML351 dysregulated an innate inflammatory response leading to impaired cardiac repair in acute heart failure. Biomedicine and Pharmacotherapy, 2021, 139, 111574.	2.5	7
11	Heart Failure Syndrome With Preserved Ejection Fraction Is a Metabolic Cluster of Non-resolving Inflammation in Obesity. Frontiers in Cardiovascular Medicine, 2021, 8, 695952.	1.1	13
12	Sphingosine-1-phosphate interactions in the spleen and heart reflect extent of cardiac repair in mice and failing human hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H599-H611.	1.5	18
13	Activation of EP4 receptor limits transition of acute to chronic heart failure in lipoxygenase deficient mice. Theranostics, 2021, 11, 2742-2754.	4.6	8
14	Guidelines for in vivo mouse models of myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H1056-H1073.	1.5	53
15	Interaction of aging with lipoxygenase deficiency initiates hypersplenism, cardiac dysfunction, and profound leukocyte directed non-resolving inflammation. GeroScience, 2021, , 1.	2.1	0
16	Re-evaluating the causes and consequences of non-resolving inflammation in chronic cardiovascular disease. Heart Failure Reviews, 2020, 25, 381-391.	1.7	22
17	Role of neutrophils in ischemic heart failure. , 2020, 205, 107424.		33
18	Progressive cardiac arrhythmias and ECG abnormalities in the Huntington's disease BACHD mouse model. Human Molecular Genetics, 2020, 29, 369-381.	1.4	35

#	Article	IF	CITATIONS
19	Lack of resolution sensor drives age-related cardiometabolic and cardiorenal defects and impedes inflammation-resolution in heart failure. Molecular Metabolism, 2020, 31, 138-149.	3.0	43
20	DOCK3 is a dosage-sensitive regulator of skeletal muscle and Duchenne muscular dystrophy-associated pathologies. Human Molecular Genetics, 2020, 29, 2855-2871.	1.4	10
21	Resolvin E1 derived from eicosapentaenoic acid prevents hyperinsulinemia and hyperglycemia in a host genetic manner. FASEB Journal, 2020, 34, 10640-10656.	0.2	43
22	Deficit of resolution receptor magnifies inflammatory leukocyte directed cardiorenal and endothelial dysfunction with signs of cardiomyopathy of obesity. FASEB Journal, 2020, 34, 10560-10573.	0.2	13
23	Raceâ€based and sexâ€based differences in bioactive lipid mediators after myocardial infarction. ESC Heart Failure, 2020, 7, 1700-1710.	1.4	24
24	Inhibition of Necroptosis to Prevent Long-term Cardiac Damage During Pneumococcal Pneumonia and Invasive Disease. Journal of Infectious Diseases, 2020, 222, 1882-1893.	1.9	13
25	Molecular and Cellular Differences in Cardiac Repair of Male and Female Mice. Journal of the American Heart Association, 2020, 9, e015672.	1.6	46
26	Race, Natriuretic Peptides, and High-Carbohydrate Challenge. Circulation Research, 2019, 125, 957-968.	2.0	34
27	Gravin gravitates atherogenesis to atheroprogression in the obesogenic setting. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H790-H792.	1.5	1
28	Adaptive immunity-driven inflammation and cardiovascular disease. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H1254-H1257.	1.5	21
29	Risk of Major Adverse Cardiovascular Events and Major Hemorrhage Among White and Black Patients Undergoing Percutaneous Coronary Intervention. Journal of the American Heart Association, 2019, 8, e012874.	1.6	24
30	Temperature-Responsive Polymersomes of Poly(3-methyl- <i>N</i> -vinylcaprolactam)- <i>block</i> -poly(<i>N</i> -vinylpyrrolidone) To Decrease Doxorubicin-Induced Cardiotoxicity. Biomacromolecules, 2019, 20, 3989-4000.	2.6	31
31	Inhibition of FPR2 impaired leukocytes recruitment and elicited non-resolving inflammation in acute heart failure. Pharmacological Research, 2019, 146, 104295.	3.1	29
32	Lipoxygenase drives lipidomic and metabolic reprogramming in ischemic heart failure. Metabolism: Clinical and Experimental, 2019, 96, 22-32.	1.5	30
33	Obesogenic diet in aging mice disrupts gut microbe composition and alters neutrophi:lymphocyte ratio, leading to inflamed milieu in acute heart failure. FASEB Journal, 2019, 33, 6456-6469.	0.2	47
34	Bone Benefits of Fish Oil Supplementation Depend on its EPA and DHA Content. Nutrients, 2019, 11, 2701.	1.7	19
35	Immune responsive resolvin D1 programs peritoneal macrophages and cardiac fibroblast phenotypes in diversified metabolic microenvironment. Journal of Cellular Physiology, 2019, 234, 3910-3920.	2.0	24
36	Pretreatment of carprofen impaired initiation of inflammatory- and overlapping resolution response and promoted cardiorenal syndrome in heart failure. Life Sciences, 2019, 218, 224-232.	2.0	8

#	Article	IF	CITATIONS
37	Mitoquinone ameliorates pressure overload-induced cardiac fibrosis and left ventricular dysfunction in mice. Redox Biology, 2019, 21, 101100.	3.9	80
38	Specialized Pro-resolving Mediators Directs Cardiac Healing and Repair with Activation of Inflammation and Resolution Program in Heart Failure. Advances in Experimental Medicine and Biology, 2019, 1161, 45-64.	0.8	16
39	Splenic leukocytes define the resolution of inflammation in heart failure. Science Signaling, 2018, 11, .	1.6	90
40	Paradigm shift – Metabolic transformation of docosahexaenoic and eicosapentaenoic acids to bioactives exemplify the promise of fatty acid drug discovery. Biotechnology Advances, 2018, 36, 935-953.	6.0	27
41	Comprehensive targeted and non-targeted lipidomics analyses in failing and non-failing heart. Analytical and Bioanalytical Chemistry, 2018, 410, 1965-1976.	1.9	18
42	Genetic deletion of 12/15 lipoxygenase promotes effective resolution of inflammation following myocardial infarction. Journal of Molecular and Cellular Cardiology, 2018, 118, 70-80.	0.9	40
43	Excess ï‰-6 fatty acids influx in aging drives metabolic dysregulation, electrocardiographic alterations, and low-grade chronic inflammation. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H160-H169.	1.5	42
44	Nox2 Activity Is Required in Obesity-Mediated Alteration of Bone Remodeling. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-10.	1.9	7
45	The Mouse Heart Attack Research Tool 1.0 database. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H522-H530.	1.5	14
46	Subacute treatment of carprofen facilitate splenocardiac resolution deficit in cardiac injury. Journal of Leukocyte Biology, 2018, 104, 1173-1186.	1.5	25
47	Unified nexus of macrophages and maresins in cardiac reparative mechanisms. FASEB Journal, 2018, 32, 5227-5237.	0.2	23
48	Immune responsive resolvin D1 programs myocardial infarctionâ€induced cardiorenal syndrome in heart failure. FASEB Journal, 2018, 32, 3717-3729.	0.2	54
49	Doxorubicin triggers splenic contraction and irreversible dysregulation of COX and LOX that alters the inflammation-resolution program in the myocardium. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H1091-H1100.	1.5	53
50	The failing of the obesity paradox in the failing heart. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H1353-H1355.	1.5	4
51	Heart functional and structural compendium of cardiosplenic and cardiorenal networks in acute and chronic heart failure pathology. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H255-H267.	1.5	44
52	Transient Focal Ischemia in a Mouse Model of Hypertrophic Cardiomyopathy (HCM). FASEB Journal, 2018, 32, 579.3.	0.2	0
53	Inhibition of FPR2 Impaired Leukocyte Getâ€in Signal and Triggers Nonâ€Resolving Inflammation in Heart Failure. FASEB Journal, 2018, 32, 287.4.	0.2	0
54	Interaction of 12/15-lipoxygenase with fatty acids alters the leukocyte kinetics leading to improved postmyocardial infarction healing. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H89-H102.	1.5	37

#	Article	IF	CITATIONS
55	Glucose transporter 4-deficient hearts develop maladaptive hypertrophy in response to physiological or pathological stresses. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H1098-H1108.	1.5	39
56	Obesity and Cardiometabolic Defects in Heart Failure Pathology. , 2017, 7, 1463-1477.		41
57	Resolution Agonist 15-epi-Lipoxin A4 Programs Early Activation of Resolving Phase in Post-Myocardial Infarction Healing. Scientific Reports, 2017, 7, 9999.	1.6	56
58	Leukocyte diversity in resolving and nonresolving mechanisms of cardiac remodeling. FASEB Journal, 2017, 31, 4226-4239.	0.2	49
59	Metabolic and Biochemical Stressors in Diabetic Cardiomyopathy. Frontiers in Cardiovascular Medicine, 2017, 4, 31.	1.1	18
60	Neutrophils: Friend, foe, or contextual ally in myocardial healing. Journal of Molecular and Cellular Cardiology, 2016, 97, 44-46.	0.9	4
61	Abrogation of Nrf2 impairs antioxidant signaling and promotes atrial hypertrophy in response to high-intensity exercise stress. Journal of Translational Medicine, 2016, 14, 86.	1.8	26
62	CD36 Is a Matrix Metalloproteinase-9 Substrate That Stimulates Neutrophil Apoptosis and Removal During Cardiac Remodeling. Circulation: Cardiovascular Genetics, 2016, 9, 14-25.	5.1	78
63	Myocardial Infarction Superimposed on Aging: MMP-9 Deletion Promotes M2 Macrophage Polarization. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 475-483.	1.7	62
64	Aging dysregulates D- and E-series resolvins to modulate cardiosplenic and cardiorenal network following myocardial infarction. Aging, 2016, 8, 2611-2634.	1.4	72
65	Nox2 Mediates Skeletal Muscle Insulin Resistance Induced by a High Fat Diet. Journal of Biological Chemistry, 2015, 290, 13427-13439.	1.6	63
66	Cardiomyocyte-specific Bmal1 deletion in mice triggers diastolic dysfunction, extracellular matrix response, and impaired resolution of inflammation. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H1827-H1836.	1.5	75
67	Building a better infarct: Modulation of collagen cross-linking to increase infarct stiffness and reduce left ventricular dilation post-myocardial infarction. Journal of Molecular and Cellular Cardiology, 2015, 85, 229-239.	0.9	59
68	Resolvin D1 activates the inflammation resolving response at splenic and ventricular site following myocardial infarction leading to improved ventricular function. Journal of Molecular and Cellular Cardiology, 2015, 84, 24-35.	0.9	194
69	Big eater macrophages dominate inflammation resolution following myocardial infarction. Journal of Molecular and Cellular Cardiology, 2015, 87, 225-227.	0.9	8
70	Obesity superimposed on aging magnifies inflammation and delays the resolving response after myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H269-H280.	1.5	70
71	Aging and energetics' â€~Top 40' future research opportunities 2010-2013. F1000Research, 2014, 3, 219	. 0.8	17
72	Streptococcus pneumoniae Translocates into the Myocardium and Forms Unique Microlesions That Disrupt Cardiac Function. PLoS Pathogens, 2014, 10, e1004383.	2.1	183

#	Article	IF	CITATIONS
73	Citrate Synthase Is a Novel <i>In Vivo</i> Matrix Metalloproteinase-9 Substrate That Regulates Mitochondrial Function in the Postmyocardial Infarction Left Ventricle. Antioxidants and Redox Signaling, 2014, 21, 1974-1985.	2.5	38
74	Inflammation revisited: inflammation versus resolution of inflammation following myocardial infarction. Basic Research in Cardiology, 2014, 109, 444.	2.5	154
75	Caveolin-1 deletion exacerbates cardiac interstitial fibrosis by promoting M2 macrophage activation in mice after myocardial infarction. Journal of Molecular and Cellular Cardiology, 2014, 76, 84-93.	0.9	67
76	Obese and diabetic KKAy mice show increased mortality but improved cardiac function following myocardial infarction. Cardiovascular Pathology, 2013, 22, 481-487.	0.7	14
77	Matrix metalloproteinase (MMP)-9: A proximal biomarker for cardiac remodeling and a distal biomarker for inflammation. , 2013, 139, 32-40.		202
78	Matrix Metalloproteinase-28 Deletion Exacerbates Cardiac Dysfunction and Rupture After Myocardial Infarction in Mice by Inhibiting M2 Macrophage Activation. Circulation Research, 2013, 112, 675-688.	2.0	187
79	Reduced BDNF attenuates inflammation and angiogenesis to improve survival and cardiac function following myocardial infarction in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H1830-H1842.	1.5	62
80	Concentrated fish oil (Lovaza®) extends lifespan and attenuates kidney disease in lupus-prone short-lived (NZBxNZW)F1 mice. Experimental Biology and Medicine, 2013, 238, 610-622.	1.1	37
81	Cardiac Wound Healing Post-myocardial Infarction: A Novel Method to Target Extracellular Matrix Remodeling in the Left Ventricle. Methods in Molecular Biology, 2013, 1037, 313-324.	0.4	22
82	Reduced BDNF attenuates inflammation and angiogenesis to improve survival and cardiac function following myocardial infarction in mice. FASEB Journal, 2013, 27, 1085.6.	0.2	0
83	Roles of saturated vs. polyunsaturated fat in heart failure survival: not all fats are created equal. Cardiovascular Research, 2012, 93, 4-5.	1.8	13
84	Transgenic overexpression of matrix metalloproteinase-9 in macrophages attenuates the inflammatory response and improves left ventricular function post-myocardial infarction. Journal of Molecular and Cellular Cardiology, 2012, 53, 599-608.	0.9	70
85	Dietary coral calcium and zeolite protects bone in a mouse model for postmenopausal bone loss. Nutrition Research, 2012, 32, 965-975.	1.3	15
86	Extracellular Matrix and Fibroblast Communication Following Myocardial Infarction. Journal of Cardiovascular Translational Research, 2012, 5, 848-857.	1.1	68
87	DHA derivatives of fish oil as dietary supplements: a nutrition-based drug discovery approach for therapies to prevent metabolic cardiotoxicity. Expert Opinion on Drug Discovery, 2012, 7, 711-721.	2.5	11
88	Fish oil decreases inflammation and reduces cardiac remodeling in rosiglitazone treated aging mice. Pharmacological Research, 2011, 63, 300-307.	3.1	10
89	Fish oil concentrate delays sensitivity to thermal nociception in mice. Pharmacological Research, 2011, 63, 377-382.	3.1	22
90	Obesity-mediated inflammatory microenvironment stimulates osteoclastogenesis and bone loss in mice. Experimental Gerontology, 2011, 46, 43-52.	1.2	130

#	Article	IF	CITATIONS
91	Combination of conjugated linoleic acid with fish oil prevents age-associated bone marrow adiposity in C57Bl/6J mice. Journal of Nutritional Biochemistry, 2011, 22, 459-469.	1.9	37
92	t10c12 LA maintains higher bone mineral density during aging by modulating osteoclastogenesis and bone marrow adiposity. Journal of Cellular Physiology, 2011, 226, 2406-2414.	2.0	33
93	High fat diet-induced animal model of age-associated obesity and osteoporosis. Journal of Nutritional Biochemistry, 2010, 21, 1162-1169.	1.9	153
94	Differential effects of conjugated linoleic acid isomers in insulin-resistant female C57Bl/6J mice. Journal of Nutritional Biochemistry, 2010, 21, 332-337.	1.9	69
95	Docosahexaenoic Acid-Enriched Fish Oil Attenuates Kidney Disease and Prolongs Median and Maximal Life Span of Autoimmune Lupus-Prone Mice. Journal of Immunology, 2010, 184, 5280-5286.	0.4	93
96	TheFat-1Transgene in Mice Increases Antioxidant Potential, Reduces Pro-Inflammatory Cytokine Levels, and Enhances PPARÎ ³ and SIRT-1 Expression on a Calorie Restricted Diet. Oxidative Medicine and Cellular Longevity, 2009, 2, 307-316.	1.9	38
97	Effect of CLA isomers and their mixture on aging C57Bl/6J mice. European Journal of Nutrition, 2009, 48, 409-418.	1.8	30
98	Conjugated linoleic acid (CLA) prevents age-associated skeletal muscle loss. Biochemical and Biophysical Research Communications, 2009, 383, 513-518.	1.0	32
99	Conjugated linoleic acid (CLA) prevents age associated skeletal muscle loss in mice by maintaining redox balance during aging. FASEB Journal, 2009, 23, .	0.2	0
100	Effect of endogenous nâ€3 PUFA on inflammation and oxidative stress. FASEB Journal, 2008, 22, 1094.1.	0.2	1
101	t10c12 CLA isomer prevents age associated bone loss by modulating osteoclastogenesis. FASEB Journal, 2008, 22, 442.3.	0.2	О