
Lewis Zhichang Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4958075/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bridging Radiotherapy to Immunotherapy: The IFN–JAK–STAT Axis. International Journal of Molecular Sciences, 2021, 22, 12295.	4.1	13
2	Editorial: Immune Cell Lineage Reprogramming in Cancer. Frontiers in Immunology, 2021, 12, 838464.	4.8	2
3	Combining PARP and DNA-PK Inhibitors With Irradiation Inhibits HPV-Negative Head and Neck Cancer Squamous Carcinoma Growth. Frontiers in Genetics, 2020, 11, 1036.	2.3	12
4	Metabolic checkpoints in neurodegenerative T helper 17 (T _H 17) and neuroregenerative regulatory T (T _{reg}) cells as new therapeutic targets for multiple sclerosis. Neural Regeneration Research, 2020, 15, 267.	3.0	4
5	Glutamine: A bad guy for antitumor immunity?. Science Translational Medicine, 2020, 12, .	12.4	Ο
6	Sirt2: A master regulator of T cell metabolism?. Science Translational Medicine, 2020, 12, .	12.4	0
7	Metabolic vulnerabilities of intratumoral T cells and tumor cells. Science Translational Medicine, 2020, 12, .	12.4	1
8	Trimming the "fatty―intratumoral T _{regs} for cancer immunotherapy. Science Translational Medicine, 2020, 12, .	12.4	1
9	Less is more for adoptive immunotherapy?. Science Translational Medicine, 2020, 12, .	12.4	4
10	Lymph nodes: The cradle for antitumor immunity. Science Translational Medicine, 2020, 12, .	12.4	0
11	Blockade of CTLA-4 and PD-1 Enhances Adoptive T-cell Therapy Efficacy in an ICOS-Mediated Manner. Cancer Immunology Research, 2019, 7, 1803-1812.	3.4	31
12	Predictive biomarkers for immune checkpoint blockade and opportunities for combination therapies. Genes and Diseases, 2019, 6, 232-246.	3.4	44
13	Metabolic regulation of TH17 cells. Molecular Immunology, 2019, 109, 81-87.	2.2	47
14	Abstract 3570: Adoptive transfer of tumor antigen-specific CTLs requires anti-CTLA-4 and anti-PD-1 to drive tumor eradication. , 2018, , .		0
15	VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nature Medicine, 2017, 23, 551-555.	30.7	467
16	Gfi1-Foxo1 axis controls the fidelity of effector gene expression and developmental maturation of thymocytes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E67-E74.	7.1	11
17	Loss of IFN-γ Pathway Genes in Tumor Cells as a Mechanism of Resistance to Anti-CTLA-4 Therapy. Cell, 2016, 167, 397-404.e9.	28.9	1,009
18	Interdependent IL-7 and IFN-γ signalling in T-cell controls tumour eradication by combined α-CTLA-4+α-PD-1 therapy. Nature Communications, 2016, 7, 12335.	12.8	93

LEWIS ZHICHANG SHI

#	Article	IF	CITATIONS
19	Gfi1: A unique controller of Tregcells. Cell Cycle, 2013, 12, 3581-3582.	2.6	2
20	Inhibitory role of the transcription repressor Gfi1 in the generation of thymus-derived regulatory T cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3198-205.	7.1	12
21	HIF1α–dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. Journal of Experimental Medicine, 2011, 208, 1367-1376.	8.5	1,447
22	The Transcription Factor Myc Controls Metabolic Reprogramming upon T Lymphocyte Activation. Immunity, 2011, 35, 871-882.	14.3	1,698
23	Signaling by the Phosphatase MKP-1 in Dendritic Cells Imprints Distinct Effector and Regulatory T Cell Fates. Immunity, 2011, 35, 45-58.	14.3	51
24	Bone marrow lymphoid and myeloid progenitor cells are suppressed in 7,12-dimethylbenz(a)anthracene (DMBA) treated mice. Toxicology, 2010, 271, 27-35.	4.2	19
25	Regulation of JNK and p38 MAPK in the immune system: Signal integration, propagation and termination. Cytokine, 2009, 48, 161-169.	3.2	255
26	Beta-naphthoflavone causes an AhR-independent inhibition of invasion and intracellular multiplication of Listeria monocytogenes in murine hepatocytes. Microbial Pathogenesis, 2009, 47, 258-266.	2.9	12
27	Use of Z310 cells as an in vitro blood–cerebrospinal fluid barrier model: Tight junction proteins and transport properties. Toxicology in Vitro, 2008, 22, 190-199.	2.4	37
28	The Aryl Hydrocarbon Receptor Is Required for Optimal Resistance to <i>Listeria monocytogenes</i> Infection in Mice. Journal of Immunology, 2007, 179, 6952-6962.	0.8	74
29	Early lead exposure increases the leakage of the blood-cerebrospinal fluid barrier, in vitro. Human and Experimental Toxicology, 2007, 26, 159-167.	2.2	54
30	Establishment of an in vitro brain barrier epithelial transport system for pharmacological and toxicological study. Brain Research, 2005, 1057, 37-48.	2.2	32