
Miguel Ängel Muıoz-MÄ;rquez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4958053/publications.pdf

Version: 2024-02-01

MIGUEL ÃNGEL

#	Article	IF	CITATIONS
1	Growth Parameters and Diffusion Barriers for Functional High-Voltage Thin-Film Batteries Based on Spinel LiNi0.5Mn1.5O4 Cathodes. ACS Applied Materials & Interfaces, 2022, , .	8.0	3
2	Structure, Composition, Transport Properties, and Electrochemical Performance of the Electrodeâ€Electrolyte Interphase in Nonâ€Aqueous Naâ€Ion Batteries. Advanced Materials Interfaces, 2022, 9, .	3.7	27
3	Role of the voltage window on the capacity retention of P2-Na2/3[Fe1/2Mn1/2]O2 cathode material for rechargeable sodium-ion batteries. Communications Chemistry, 2022, 5, .	4.5	12
4	Influence of the Current Density on the Interfacial Reactivity of Layered Oxide Cathodes for Sodiumâ€ion Batteries. Energy Technology, 2022, 10, .	3.8	3
5	Alumina Nanofilms As Active Barriers for Polysulfides in High-Performance All-Solid-State Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2021, 4, 2463-2470.	5.1	14
6	Understanding the electrode – electrolyte interphase of high voltage positive electrode Na4Co3(PO4)2P2O7 for rechargeable sodium-ion batteries. Electrochimica Acta, 2021, 372, 137846.	5.2	14
7	AC Magnetron Sputtering: An Industrial Approach for Highâ€Voltage and Highâ€Performance Thinâ€Film Cathodes for Liâ€Ion Batteries. Advanced Materials Interfaces, 2021, 8, 2002125.	3.7	4
8	Work Function Evolution in Li Anode Processing. Advanced Energy Materials, 2020, 10, 2000520.	19.5	40
9	Revealing <i>In Situ</i> Li Metal Anode Surface Evolution upon Exposure to CO ₂ Using Ambient Pressure X-Ray Photoelectron Spectroscopy. ACS Applied Materials & Interfaces, 2020, 12, 26607-26613.	8.0	21
10	Surface Evolution of Lithium Titanate upon Electrochemical Cycling Using a Combination of Surface Specific Characterization Techniques. Advanced Materials Interfaces, 2020, 7, 1902164.	3.7	2
11	Toward Stable Electrode/Electrolyte Interface of P2-Layered Oxide for Rechargeable Na-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 28885-28893.	8.0	35
12	Fluorineâ€Free Noble Salt Anion for Highâ€Performance Allâ€Solidâ€State Lithium–Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1900763.	19.5	66
13	Unraveling the role of Ti in the stability of positive layered oxide electrodes for rechargeable Na-ion batteries. Journal of Materials Chemistry A, 2019, 7, 14169-14179.	10.3	55
14	Naâ€lon Batteries for Large Scale Applications: A Review on Anode Materials and Solid Electrolyte Interphase Formation. Advanced Energy Materials, 2017, 7, 1700463.	19.5	261
15	Predicting the suitability of aqueous solutions of deep eutectic solvents for preparation of co-continuous porous carbons via spinodal decomposition processes. Carbon, 2017, 123, 536-547.	10.3	29
16	Influence of Using Metallic Na on the Interfacial and Transport Properties of Na-Ion Batteries. Batteries, 2017, 3, 16.	4.5	17
17	Direct observation of electronic conductivity transitions and solid electrolyte interphase stability of Na2Ti3O7 electrodes for Na-ion batteries. Journal of Power Sources, 2016, 330, 78-83.	7.8	42
18	Towards environmentally friendly Na-ion batteries: Moisture and water stability of Na2Ti3O7. Journal of Power Sources, 2016, 324, 378-387.	7.8	39

MIGUEL ÄNGEL

#	Article	IF	CITATIONS
19	Identification of the critical synthesis parameters for enhanced cycling stability of Na-ion anode material Na2Ti3O7. Acta Materialia, 2016, 104, 125-130.	7.9	27
20	Local Structure and Stability of SEI in Graphite and ZFO Electrodes Probed by As K-Edge Absorption Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 4287-4295.	3.1	20
21	Nitrogen-doped carbons prepared from eutectic mixtures as metal-free oxygen reduction catalysts. Journal of Materials Chemistry A, 2016, 4, 478-488.	10.3	35
22	Structure of H ₂ Ti ₃ O ₇ and its evolution during sodium insertion as anode for Na ion batteries. Physical Chemistry Chemical Physics, 2015, 17, 6988-6994.	2.8	46
23	Composition and Evolution of the Solid-Electrolyte Interphase in Na ₂ Ti ₃ O ₇ Electrodes for Na-Ion Batteries: XPS and Auger Parameter Analysis. ACS Applied Materials & Interfaces, 2015, 7, 7801-7808.	8.0	164
24	Absence of Ni on the outer surface of Sr doped La ₂ NiO ₄ single crystals. Energy and Environmental Science, 2014, 7, 311-316.	30.8	85
25	Combined x-ray photoelectron spectroscopy and scanning electron microscopy studies of the LiBH4–MgH2 reactive hydride composite with and without a Ti-based additive. Journal of Applied Physics, 2011, 109, .	2.5	25
26	Permanent magnetism in phosphine- and chlorine-capped gold: from clusters to nanoparticles. Journal of Nanoparticle Research, 2010, 12, 1307-1318.	1.9	21
27	Tailored synthesis of nanostructured WC/a-C coatings by dual magnetron sputtering. Surface and Coatings Technology, 2010, 204, 3490-3500.	4.8	110
28	Surface relaxation in Cu(410)–O: A medium energy ion scattering study. Surface Science, 2010, 604, 788-796.	1.9	5
29	Compositional and structural medium energy ion scattering study of the temperature mediated diffusion determination at the Co/V interface in Co/V/MgO(100). Surface Science, 2010, 604, 2177-2183.	1.9	1
30	Magnetometry and electron paramagnetic resonance studies of phosphine- and thiol-capped gold nanoparticles. Journal of Applied Physics, 2010, 107, 064303.	2.5	11
31	Oxidation State and Local Structure of Ti-Based Additives in the Reactive Hydride Composite 2LiBH ₄ + MgH ₂ . Journal of Physical Chemistry C, 2010, 114, 3309-3317.	3.1	66
32	Direct Observation and Theory of Trajectory-Dependent Electronic Energy Losses in Medium-Energy Ion Scattering. Physical Review Letters, 2009, 102, 096103.	7.8	14
33	Electronic structure, magnetic properties, and microstructural analysis of thiol-functionalized Au nanoparticles: role of chemical and structural parameters in the ferromagnetic behaviour. Journal of Nanoparticle Research, 2008, 10, 179-192.	1.9	38
34	Surface plasmon resonance and magnetism of thiol-capped gold nanoparticles. Nanotechnology, 2008, 19, 175701.	2.6	55
35	Influence of the Capping Molecule on the Magnetic Behavior of Thiol-Capped Gold Nanoparticles. IEEE Transactions on Magnetics, 2008, 44, 2768-2771.	2.1	10
36	Surface structure of sphalerite studied by medium energy ion scattering and XPS. Surface Science, 2007, 601, 352-361.	1.9	56

MIGUEL ÂNGEL

#	Article	IF	CITATIONS
37	Evolution of the microstructure, chemical composition and magnetic behaviour during the synthesis of alkanethiol-capped gold nanoparticles. Acta Materialia, 2007, 55, 1723-1730.	7.9	23
38	Medium-energy ion-scattering study of the structure of cleanTiO2(110)â^'(1×1). Physical Review B, 2006, 73, .	3.2	28
39	N-induced pseudo-(100) reconstruction of Cu(111): One layer or more?. Surface Science, 2005, 582, 97-109.	1.9	12
40	The methanethiolate-induced pseudo-(100) reconstruction of Cu(111): A medium energy ion scattering structure study. Surface Science, 2005, 598, 209-217.	1.9	20
41	Energy loss in medium-energy ion scattering: A combined theoretical and experimental study of the model system Y on Si(111). Physical Review B, 2005, 72, .	3.2	11
42	Surface and subsurface oxide formation on Ni(100) and Ni(111). Surface Science, 2004, 565, 1-13.	1.9	17
43	Structural studies at metallic surfaces and interfaces using MEIS. Current Applied Physics, 2003, 3, 19-24.	2.4	8